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Effective description of cooling and thermal shifts in quantum systems coupled to bosonic modes
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Recently, an effective Lindblad master equation for quantum systems whose dynamics are coupled to dis-
sipative bosonic modes was introduced [Jäger et al., Phys. Rev. Lett. 129, 063601 (2022)]. In this approach,
the bosonic modes are adiabatically eliminated, and one can effectively describe the dynamics of the quantum
systems. Here, we demonstrate that this effective master equation can also be used to describe cooling in systems
with light-matter interactions. We provide two examples: sideband cooling of an optomechanical oscillator
in the unresolved as well as resolved sideband regime and cooling of an interacting quantum system, the
transverse-field Ising model. We compare our effective description with a full numerical simulation of the
composite formed by the quantum system plus bosonic mode and find excellent agreement. In addition, we
present how the effective master equation can be extended to the case of nonvanishing mean thermal occupations
of the bosonic mode. We use this approach to calculate modifications of the linewidth and frequency for a
two-level system coupled to a dissipative thermal bosonic mode. Here, we highlight that our approach allows for
a massive reduction of the underlying Liouville-space dimension.
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I. INTRODUCTION

Engineering the dissipation in a quantum system (QS) is
an exciting possibility to cool its degrees of freedom and
to stabilize desired correlated quantum states [1,2]. Dissi-
pation can, for example, be engineered by coupling the QS
strongly to specific modes of the electromagnetic field that
can irreversibly transfer energy from the QS into free space.
This strong coupling may be realized by trapping radiation
in geometries such as fibers [3], waveguides [4–6], resonators
[7,8], and cavities [9,10] that effectively modify the density of
states of the electromagnetic field.

For instance, cavity cooling [8,11,12] is based on this prin-
ciple, in which the resonance frequency of a cavity is blue
detuned from resonances in the QS, increasing the probability
of the emission of high-energy photons into free space, which
leaves the QS at a lower energy due to energy conservation.
However, this simplified picture ignores that thermal and
quantum back-action of the electromagnetic field can also
result in heating of the QS, and therefore, only a thorough
analysis of the underlying mechanisms can uncover the entire
cooling potential. This is why, in order to faithfully predict
this potential, one requires tools which take into account the
correct noise terms, dissipation rates, and also the emerging
level shifts in the QS.

Recently, a master equation of the Lindblad form [13] was
derived which describes the dynamics of the QS coupled to
bosonic modes (BMs) [14]. This master equation describes
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the effective dissipative dynamics of the QS’s density matrix
without involving the BMs, which allows for an efficient sim-
ulation due to a massive reduction of the underlying Liouville-
space dimension. This master equation was proposed as a tool
to simulate open many-body QSs with engineered interactions
and dissipation by the BMs. With this, it is a perfect fit to
analyze cooling in the QS coupled to BMs. However, this
potential has not been exploited yet and is at the center of this
paper.

More precisely, the purpose of this paper is twofold: (i)
We apply this effective treatment to describe and analyze
cooling of the QS. Here, we investigate two specific exam-
ples of QSs and, in both cases, compare the effective steady
state and dynamics to an exact treatment, be it analytical or
numerical. With these two examples, we present evidence
that this master equation provides a faithful description of
the effective QS dynamics. Furthermore, in each example,
we highlight a certain advantage, namely, the validity for
a wide range of the QS-BM coupling strength, including
strong-coupling effects that are not described by previous
treatments, as well as the applicability to interacting many-
body QSs. (ii) Under certain conditions, we generalize the
effective master equation derived in Ref. [14] to the case
where the mean thermal occupation of the BM is different
from zero, which is of particular interest for scenarios in
which the BM frequency lies well below the optical regime. In
this case, by means of a paradigm model system, the quantum
Rabi model, we show that the effective treatment provides
accurate results that agree with exact numerical treatments,
for which one requires very high Hilbert-space truncation
dimensions, even for moderately low thermal occupation
numbers.
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This paper is structured as follows. In Sec. II, we in-
troduce the theoretical model that lies at the basis of our
investigation. In Sec. III, we present the cooling dynamics
described by the effective Lindblad master equation for the
zero-temperature case by applying it to two different physical
systems in Secs. III A and III B. The finite-temperature case in
certain scenarios is shown in Sec. IV, including an exemplary
application in Sec. IV A. We conclude our results in Sec. V.
For the sake of completeness, the details of the derivation of
the effective master equation are provided in Appendixes A
and B.

II. THEORETICAL MODEL

In this section, we introduce the class of dissipative setups
under investigation and present the effective master equa-
tion that we employ to study them. A detailed derivation of
such an effective description was shown in Ref. [14] for the
case of a quasi-zero-temperature environment consisting of
multiple BMs. In this paper, however, we will focus on only
the single-mode case.

We consider the composite of the BM and QS to be de-
scribed by a Born-Markov master equation:

Lρ̂ = −i[Ĥ , ρ̂] + Lthρ̂, (1)

where ρ̂ is the density matrix of the composite of the BM
and QS. Here, the coherent dynamics is governed by the
Hamiltonian

Ĥ = ĤS + â†�̂Sâ + â†Ŝ + Ŝ†â, (2)

where we have introduced the BM annihilation operator â.
Furthermore, ĤS denotes the QS Hamiltonian in the absence
of the BM. The remaining terms describe the coupling be-
tween the QS and the BM. In detail, the term including �̂S

represents the BM energy. Due to the presence of the QS, it
can possibly include operators of the QS degrees of freedom.
The last part, â†Ŝ + Ŝ†â, is the BM driving term, which may
likewise contain QS operators in Ŝ.

In addition to the coherent part, we assume the BM is in
contact with a thermal environment at inverse temperature β.
In a Born-Markov approximation, its thermalization with the
environment is described by the superoperator

Lth = κ{(n̄ + 1)D[â] + n̄D[â†]} (3)

acting on the density operator describing the BM degrees of
freedom. The action of the dissipators D is given by D[Ô]ρ̂ =
2Ôρ̂Ô† − Ô†Ôρ̂ − ρ̂Ô†Ô. Furthermore, the thermalization
rate is denoted by κ , and the mean thermal occupation num-
ber of the BM at the environment temperature is n̄ = [exp
(βωc) − 1]−1, with ωc being the BM resonance frequency.

The Supplemental Material of Ref. [14] shows that for a
quasi-zero-temperature environment (n̄ ≈ 0), the time evo-
lution of the reduced density matrix of the QS, ρ̂sys =
TrBM(D̂†ρ̂D̂), can be decoupled up to second order in ||α̂||
and Ŝ under the transformation

D̂ = exp(α̂†â − â†α̂). (4)

Physically, this decoupling is based on a weak-coupling ap-
proximation between the BM and the QS. Above, TrBM( · )
denotes the trace over the BM degrees of freedom, and the

operator α̂ has to be determined for every specific setup at
hand. In fact, in the original picture, before the displacement
operation is performed, α̂ can be seen as the partial trace over
the BM operator â, i.e., α̂ρ̂sys ≈ TrBM(âρ̂ ).

In the next two sections, we will separately analyze the case
of a zero bosonic occupation and a finite bosonic occupation
and, in both cases, show how the decoupling can be achieved
by a respectively appropriate choice of the effective-field op-
erator α̂ that solves the corresponding elimination condition.
We will also give some examples to demonstrate the applica-
bility of this method in both cases. In order to do so, we will
compare the simulation of the effective master equations to
numerical treatments of the full master equations without the
elimination of the BM.

III. EFFECTIVE LINDBLAD MASTER EQUATION: ZERO
BOSONIC OCCUPATION

Let us first focus on the zero bosonic occupation, n̄ = 0,
that was introduced in Ref. [14]. In order to effectively decou-
ple the QS from the BM in this situation, the condition that
the effective-field operator α̂ has to fulfill reads

∂α̂

∂t
= −i[ĤS, α̂] − i�̂Sα̂ − iŜ − κα̂. (5)

Once the solution α̂ that solves this condition is found, the Li-
ouvillian governing the effective master equation ∂ρ̂sys/∂t =
Leffρ̂sys of the QS is given by

Leffρ̂sys = −i[Ĥeff, ρ̂sys] + κD[α̂]ρ̂sys, (6)

where the coherent dynamics is described by the effective
Hamiltonian

Ĥeff = ĤS + 1
2 (α̂†Ŝ + Ŝ†α̂). (7)

In summary, solving the elimination condition (5) yields
the operator α̂ for a given set of QS operators ĤS , �̂S , and
Ŝ. In the effective dynamics of the QS degrees of freedom,
this α̂ then appears both in an effective QS driving term and
in the dissipator of the originally nondissipating QS, which is
induced by the coupling to the BM.

A. Cavity cooling of a mechanical oscillator

As a first example, we will now use this approach to
describe cooling in an optomechanical setup [see Fig. 1(b)].
Here, the BM is a single mode of a laser-driven, lossy optical
cavity with linewidth κ that is interacting with one of its har-
monically suspended mirrors via the radiation-pressure force
[8,15,16]. Specifically, we consider the QS Hamiltonian to be

ĤS = ω0b̂†b̂, (8)

where ω0 and b̂ respectively denote the bare frequency and
the annihilation operator of the mirror motion. The coupling
to the driven cavity, on the other hand, is described by

�̂S = −	 + g(b̂† + b̂), (9)

Ŝ = η, (10)
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FIG. 1. (a) General sketch of the setups that can be treated using
the effective master equation (1). (b) A lossy, laser-driven cavity
interacting with one of its harmonically moving mirrors via radiation
pressure. (c) A transverse-field Ising chain collectively coupling to a
cavity mode. (d) A single atom coupled to a bosonic mode at nonzero
temperature.

with the detuning 	 = ωL − ωc between the driving laser of
frequency ωL and the cavity, η being the driving strength, and
g being the optomechanical coupling strength.

Since we are considering optical cavities, the restriction to
the case of n̄ = 0 is a reasonable assumption. The elimination
condition (5) for α̂ at steady state, which we need to solve to
obtain our effective description, then reads

ω0[b̂†b̂, α̂] + g(b̂ + b̂†)α̂ − (	 + iκ )α̂ + η = 0. (11)

To solve this equation for α̂, it is helpful to introduce
the operator α̃ = T̂ α̂ [17,18], with the translation operator
T̂ = exp[g(b̂† − b̂)/ω0]. This transforms the above equa-
tion into

ω0[α̃, b̂†b̂] +
(

	 + iκ + g2

ω0

)
α̃ = ηT̂ . (12)

Expanding this in the mechanical-oscillator Fock states |m〉,
with b̂|m〉 = √

m|m〉, and applying T̂ † from the left then let us
arrive at

α̂ = ηT̂ †
∞∑

m=0

[
(m − b̂†b̂)ω0 + 	 + iκ + g2

ω0

]−1

T̂ |m〉〈m|

(13)

for the original operator α̂. Executing the remaining transla-
tion transform on the right-hand side finally yields

α̂ =
∞∑

m=0

η

	 + mω0 + iκ − ω0b̂†b̂ − g(b̂ + b̂†)
|m〉〈m|, (14)

which is then used to establish the effective Hamiltonian (28)
and Liouvillian (6).

Such optomechanical setups show cooling in the regime
	 < 0 [8,16]. In order to show that our effective model
also accurately reproduces this cooling in the weak-coupling
regime g � |	 + iκ| we can expand α̂, according to [19],

leading to

α̂ =
∞∑

m,k=0

η

	 + mω0 + iκ

[
ω0b̂†b̂ + g(b̂ + b̂†)

	 + mω0 + iκ

]k

|m〉〈m|.

(15)

In the weak-coupling regime, g � κ , we expand α̂ up to first
order in g/κ such that

[ω0b̂†b̂ + g(b̂ + b̂†)]k|m〉
≈ ω0mk|m〉 + c+(m)|m + 1〉 + c−(m)|m − 1〉, (16)

with

c−(m) = ωk−1
0 g

√
m

k−1∑
l=0

(m − 1)lmk−1−l

= ωk−1
0 g

√
m[mk − (m − 1k )], (17)

c+(m) = ωk−1
0 g

√
m + 1

k−1∑
l=0

(m + 1)lmk−1−l

= ωk−1
0 g

√
m + 1[(m + 1)k − mk]. (18)

Using these results and inserting them in Eq. (15), we can
use the geometric series

∑∞
k=0 xk = 1/(1 − x), with x =

mω0/(	 + mω0 + iκ ) or x = (m ± 1)ω0/(	 + mω0 + iκ ), to
arrive at the closed expression

α̂ = η

	 + iκ

[
1 +

(
gb̂

	 + ω0 + iκ
+ gb̂†

	 − ω0 + iκ

)]
. (19)

If we further assume that the frequency ω0 is sufficiently
large, such that we can neglect all counterrotating terms in
the effective master equation (6), we may approximate it as

Leffρ̂sys ≈ −iω0[b̂†b̂, ρ̂sys] + A−D[b̂]ρ̂sys + A+D[b̂†]ρ̂sys,

(20)

where we have introduced the cooling rate A− and the heating
rate A+, which have the form

A∓ = κg2η2

(	2 + κ2)[(	 ± ω0)2 + κ2]
. (21)

From these rates it is straightforward to calculate the mean
number of motional excitations m̄ = 〈b̂†b̂〉 at steady state,
which reads

m̄ = A+
A− − A+

= (	 + ω0)2 + κ2

−4	ω0
(22)

and coincides with the result reported in Ref. [15]. This mean

excitation number exhibits a minimum at 	 = −
√

κ2 + ω2
0.

In the nonresolved sideband regime, κ 	 ω0, the minimum
is achieved at 	 ≈ −κ , whereas in the resolved sideband
regime, κ � ω0, it is achieved at 	 ≈ −ω0.

We compare these known approximate results with the
ones obtained by calculating the steady state of the full master
equation (1) and the effective master equation (6), in which
we use Eq. (14). In Fig. 2, we show the mean number of
excitations m̄ [Eq. (22)] at steady state as a function of the
detuning 	 in units of κ as solid lines. The pluses and
crosses correspond to the steady state of the effective master
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FIG. 2. Mean excitation number m̄ = 〈b̂†b̂〉 at steady state as a
function of 	 in units of κ for (a) ω0/κ = 0.5 and (b) ω0/κ = 3.
Pluses and crosses correspond to the steady state of the effective
master equation (6) with Eq. (14) for different values of g/κ (see
insets). Circles and diamonds show the steady state of the full master
equation (1). The dashed lines represent the approximate result (22).
In both cases, the driving strength is η/κ = 0.1.

equation obtained for the two values of g/κ that are visible
in the legends of Figs. 2(a) and 2(b). For comparison, the
results of the full master equation are shown as circles and
diamonds for the same values of g/κ . In principle, when
calculating expectation values of system observables, such as
b̂†b̂, one has to take into account corrections originating from
the displacement D̂ when going to the transformed picture.
The lowest-order correction is of second order in α̂, and we
found it to be negligible in all presented results.

For all parameters, we find very good agreement of the
results obtained from the full master equation and the re-
sults calculated from the effective master equation. The
approximate result (22) for m̄, which was derived in the weak-
coupling regime, is shown by solid lines and is, again, in good
agreement for g/κ = 0.1. However, for larger ratios g/κ , for
both ω0/κ = 0.5 [Fig. 2(a)] and ω0/κ = 3 [Fig. 2(b)], we find
significant discrepancies between the results of Eq. (22) and
the steady-state result of the effective and full master equation.
This highlights that the approximate result is valid in only the
weak-coupling regime, while the effective description is still
accurate beyond the often assumed weak-coupling approxi-
mation.

B. Cavity cooling of an Ising chain

As a second case study, we will show that the effective
master equation (6) can also be used to describe cooling of

an interacting many-body QS. In order to do so, we study
the dynamics of a transverse-field Ising model [20], with open
boundary conditions, that is coupled to a single-mode cavity
via a Jaynes-Cummings interaction [see Fig. 1(c)]. The QS
Hamiltonian in this case is given by

ĤS = h
N∑

n=1

σ̂ z
n − J

N−1∑
n=1

σ̂ x
n σ̂ x

n+1, (23)

where h denotes the transverse field, J is the nearest-neighbor
interaction, and σ̂

q
n , for q ∈ {x, y, z} and n = 1, . . . , N , repre-

sent the Pauli operators of the nth atom. The coupling of the
spins to the cavity field, on the other hand, is described by

�̂S = ωc, (24)

Ŝ = g
N∑

n=1

σ̂−
n , (25)

with ωc being the cavity frequency, g being the Jaynes-
Cummings interaction strength, and σ̂±

n = (σ̂ x
n ± iσ̂ y

n )/2.
Similar models have been used to study the interplay be-
tween matter-matter and light-matter interactions [21,22].
Here, however, we are interested in the dissipative, or, more
precisely, the cooling, dynamics of the spins.

Following the idea presented in Ref. [23], where a dis-
sipative ancillary spin at the end of the chain is leveraged
to sympathetically cool the Ising chain into the ground-state
manifold, in our case, we can employ the dissipation of the
cavity to cool the many-body QS in the same spirit.

To achieve efficient cooling, we choose the cavity fre-
quency ωc to be equal to the splitting between the ground-state
energy and the first-excited-state energy of the Ising chain.
Furthermore, we impose that the cavity linewidth must
be able to resolve this gap, i.e., κ < ωc. This energy-
matching condition then allows us to efficiently transfer
energy from the spins into the cavity, from which it can be
dissipated.

Figure 3(a) depicts the eigenenergies En of ĤS in units
of κ for N = 9, h/κ = 1, and J/κ = 5. The horizontal lines
represent the energy splitting between the doubly degener-
ate ground state and the first excited state. As mentioned
above, for ground-state cooling we set the cavity frequency
ω to match this splitting and calculate the time evolution of
the mean energy 〈ĤS〉 of the Ising chain, where we choose
the state in which all spins of the chain are in their up
state as the initial state. The cooling is shown in Fig. 3(b)
for a Jaynes-Cummings interaction strength g/κ = 0.3. Here,
circles represent the result obtained using the full master
equation (1), and pluses show the one obtained using the
effective master equation (6). For the calculation of the ef-
fective master equation we numerically solve Eq. (5) for the
steady state of α̂ using Eqs. (23)–(25). The numerically found
operator α̂ is then used to calculate the effective Hamiltonian
in Eq. (7) and the effective master equation (6). The latter
is then used to time evolve the reduced density matrix. The
corresponding time evolution is in good agreement with the
one obtained from the full master equation (1) and shows an
efficient cooling of the Ising chain by the dissipative cavity
into its ground-state manifold.
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FIG. 3. (a) Eigenenergies En in units of κ of a transverse-field
Ising chain with N = 9, h/κ = 1, and J/κ = 5. The ground-state
and first-excited-state energies are shown by the lower and upper
horizontal line, respectively. (b) Mean energy 〈ĤS〉 in units of κ as a
function of time in units of 1/κ for the same parameters as in (a) and
a Jaynes-Cummings interaction strength g/κ = 0.3. The initial state
is the fully polarized state with 〈σ̂ z

j 〉 = 1 for all j. The horizontal
line represents the ground-state energy. Pluses are calculated with
the effective master equation, and circles are calculated with the full
master equation including the cavity field.

IV. EFFECTIVE LINDBLAD MASTER EQUATION:
FINITE TEMPERATURE

In this section, we now turn to the situation where the BM
has a nonvanishing thermal occupation (n̄ �= 0) at steady state.
While the contribution of a thermal steady-state occupation
is negligible for optical frequencies, it can play an important
role in the microwave regime if one considers temperatures
T ∼ 1 K or higher. In this regime, it is important to include
the effects of the thermal occupation in the quantum system
which we neglected in the previous section. The general idea
to derive a master equation in the thermal regime is basically
the same: we apply the displacement D̂ [Eq. (4)] to the full
master equation [Eq. (1)] such that the BMs are, to good
approximation, in a thermal state,

ρ̂th = 1

n̄ + 1

(
n̄

n̄ + 1

)â†â

, (26)

after the transformation. Subsequently, we calculate the best
choice of α̂ that decouples the thermal BMs from the QS. In
Appendix A, we demonstrate this calculation and find that the
same calculation is possible if one can treat the commutator
[�̂S, α̂] perturbatively. The reason for this finding is that ρ̂th

can be a mixture of many Fock states of the BMs which can
exhibit different frequencies due to �̂S depending on the state
of the QS. Assuming [�̂S, α̂] ≈ 0 means that this difference

in frequencies is negligible. In this case we find the same
expression [Eq. (5)] that decouples the BMs from the QS.
Appendix B shows that the resulting Liouvillian that gov-
erns the QS’s effective master equation ∂ρ̂sys/∂t = Leffρ̂sys is,
however, modified and takes the form

Leffρ̂sys = −i[Ĥeff, ρ̂sys] + κ{(n̄ + 1)D[α̂] + n̄D[α̂†]}ρ̂sys,

(27)

where the coherent dynamics is now described by the effective
Hamiltonian

Ĥeff = ĤS + 1

2
(α̂†Ŝ + Ŝ†α̂) + n̄

2
([α̂†, Ŝ] + [Ŝ†, α̂]) + n̄�̂S.

(28)

We will now discuss the additional terms that appear in
Eq. (27) compared to Eq. (6), which are identical in the case
with n̄ = 0. The dissipators in Eq. (27) are modified because
n̄ �= 0 (in the form of an enhancement of the dissipation rate)
and also because of the appearance of the conjugated field
operator α̂† as a jump operator. In the effective Hamiltonian
(28), we find two additional terms that are present only for
n̄ �= 0. The term proportional to �̂S gives rise to an additional
potential term for the QS originating from the thermal occu-
pation. The terms proportional to Ŝ are modified for n̄ �= 0
and describe the influence of thermal fluctuations in emission-
absorption and absorption-emission processes of quanta in
the BMs. In order to bring out the effects of finite n̄ clearly,
we will analyze a minimal model which consists of a single
two-level system which couples to a thermal BM.

A. Dissipative quantum Rabi model at finite temperature

We now apply the method presented above to a paradigm
model of light-matter interaction in the dipole approxima-
tion, namely, the quantum Rabi model [24,25]. This model
describes a single atomic dipole interacting with the electric
field of a single cavity mode [see Fig. 1(b)]. In this case, we
identify the QS Hamiltonian

ĤS = ω0

2
σ̂ z, (29)

with ω0 being the atomic transition frequency, and

�̂S = ωc, (30)

Ŝ = gσ̂ x, (31)

ωc being with the cavity frequency and g being the coupling
strength. Here, σ̂ q, for q ∈ {x, y, z}, denote the Pauli operators.
For this model, neglecting the commutator [�̂S, α̂] is exact
since �̂S = ωc is a scalar. The steady-state elimination condi-
tion (5) then reads

ω0

2
[σ̂ z, α̂] + (ωc − iκ )α̂ + gσ̂ x = 0 (32)

and is readily solved by the effective-field operator

α̂ = α+σ̂+ + α−σ̂−, (33)

where α± = −g/(ωc ± ω0 − iκ ) and σ̂± = (σ̂ x ± iσ̂ y)/2.
With this, we can derive the effective Hamiltonian in Eq. (28),
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FIG. 4. (a) Left: Eigenvalue spectra of L (circles) and Leff

(pluses). Right: Zoom of the four eigenvalues of L that correspond to
the effective spectrum for different truncations L of the Hilbert-space
dimension. (b) Steady-state expectation value 〈σ̂ z〉 as a function of n̄
for ωc/κ = 2.5 and ω0/κ = 3. The solid line is the effective result,
and markers represent the results of the full master equation for
g/κ = 0.1, 0.3, 3.

which takes the form

Ĥeff = ω0 + 	ω0

2
σ̂ z + �ω0

2
, (34)

with the frequency shift

	ω0 = g(2n̄ + 1)[Re(α−) − Re(α+)] (35)

and the energy offset

�ω0 = g[Re(α−) + Re(α+)]. (36)

The above frequency shift is split into two components, which
correspond to the corotating terms ∝ Re(α−) and the counter-
rotating terms ∝ Re(α+). Explicitly, it is given by

	ω0 = −(2n̄ + 1)

[
g2(ωc − ω0)

(ωc − ω0)2 + κ2
− g2(ωc + ω0)

(ωc + ω0)2 + κ2

]
(37)

and is proportional to 2n̄ + 1. This includes contributions
from both thermal excitations and vacuum fluctuations. The
co- and counterrotating terms correspond to the Lamb shift
and the Bloch-Siegert shift, respectively. In addition to the
effective Hamiltonian, we also calculate, using Eq. (5), the
dissipator in Eq. (27), thereby forming the effective Liouvil-
lian Leff. In Fig. 4, we compare the eigenvalue spectra of the
full Liouvillian L and the effective one Leff. The parameters
are ωc/κ = 2.5, ω0/κ = 3, g/κ = 0.1, and n̄ = 4. In the left
panel, we find good agreement of the four eigenvalues of
Leff with eigenvalues of the exact spectrum. The right panel

represents a zoom of the area to the right of the vertical line in
the left panel, which contains these four eigenvalues. The dif-
ferent markers correspond to different truncation dimensions
L of the BM Hilbert space for the numerical simulation of the
full master equation. We find that even for a relatively low
thermal occupation number, n̄ = 4 in this case, which roughly
corresponds, for example, to a BM frequency of 10 GHz at a
temperature of 2 K, Hilbert-space dimensions of L = 20 are
not sufficient to provide accurate numerical results, and we
have to resort to L > 80 to attain satisfactory convergence.
This implies that we reduce the underlying Liouville space
dimension by a factor of 802 = 6400, which highlights the
efficiency of our effective approach.

In the effective description, the atomic steady state can be
calculated straightforwardly from Leff and has the form

ρ̂st = 1

2
− ωcω0(

ω2
c + ω2

0 + κ2
)
(2n̄ + 1)

σ̂ z. (38)

Figure 4(b) shows the steady-state expectation value 〈σ̂ z〉
as a function of the thermal occupation number n̄ of the
BM. The solid line represents the effective result 〈σ̂ z〉 =
−2ωcω0/[(ω2

c + ω2
0 + κ2)(2n̄ + 1)], obtained from Eq. (38),

and the markers represent the results of the full master
equation for different values of the coupling constant g.
The remaining parameters are the same as in Fig. 4(a),
and the three values of the coupling strength are g/κ =
0.1, 0.3, 3. For these values of g we respectively find ||α̂|| =
g/

√
(ωc − ω0)2 + κ2 ≈ 0.09, 0.27, 2.68 for the perturbation

parameter of the QS-BM decoupling. For g/κ = 0.1 (pluses)
the exact results agree well with the effective one, and even
for g/κ = 0.3 (circles) they overlap to a good degree. Only
for a strong coupling g > κ [e.g., the squares in Fig. 2(b) for
g/κ = 3] do we start to see clear discrepancies. Convergence
tests show that, in this case, for the calculation of 〈σ̂ z〉, only
L � 65 is sufficient for numerical simulations using L.

V. CONCLUSIONS

In this paper, we applied an effective Lindblad master
equation to describe the cooling dynamics of a quantum sys-
tem that is coupled to a dissipative bosonic mode. We showed
that this approach can correctly describe the unresolved
and resolved sideband-cooling regimes in an optomechanical
setup. We compared our approach to a numerical treatment
of a mechanical oscillator plus bosonic mode as well as
to previous results obtained for weak light-matter coupling.
Remarkably, we found that the effective approach can also
describe the correct steady state for rather large values of
the light-matter coupling. As a next step, we studied the
cooling dynamics of an interacting many-body quantum sys-
tem described by the transverse-field Ising model which is
coupled to a bosonic mode. We were able to show that by
understanding the spectral properties of the transverse-field
Ising model we can cool the system into its ground state.
We described this cooling method effectively by simulating
only the dynamics of the spins and compared it to a full
simulation of the spins and bosonic mode. We found excellent
agreement, highlighting the possibility to use the effective
master equation to also describe cooling of many-body quan-
tum systems. Finally, we generalized this effective master
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equation so that it is applicable also in the regime where the
bosonic mode has a nonvanishing thermal occupation. With
this new master equation we described a single spin coupled
to a thermal and dissipative bosonic mode. Here, we com-
pared the steady state of the spin obtained from the effective
description to the steady state of the composite dynamics of
the spin and field. We found very good agreement even for
intermediate coupling strengths. Most significantly, we were
able to describe the correct frequency shifts and damping
rates of the spin without including the bosonic mode, which
could otherwise be adequately modeled only with a very large
Fock-space cutoff. This highlights the tremendous reduction
of the Liouville-space dimension that we achieved by using
the effective Lindblad master equation.

In this paper we focused on a comparison of the effective
Lindblad-master-equation techniques to existing and exact
results. As a next step, one could model with this Lindblad
master equation various other cooling techniques that are
more evolved or for which efficient numerical approaches are
missing. In the future, we aim to also include dissipation of
the quantum system itself in the description, which could
significantly modify its dynamics and possibly the cooling
efficiency. Additionally, it would be interesting to see the ef-
fect that this dissipation has on the elimination of the bosonic
modes. Furthermore, we believe that there is great potential
for this theory to also describe collective decay mechanisms,
which could be used to engineer superradiant and subradiant
states that might be useful both for cooling protocols [26–30]
and for the preparation of entangled many-body states [31,32].
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APPENDIX A: DERIVATION OF THE EFFECTIVE
MASTER EQUATION WITH A THERMAL ENVIRONMENT

The procedure for the elimination of the BM at zero
temperature and the ensuing effective master equation were
reported in Ref. [14]. In this section, we present the details of
the modifications of those results that are due to an environ-
ment with nonvanishing thermal occupation n̄.

Like for the zero-occupation limit, we use a displacement
operator that is essentially a generalization of the polaron
transformation [33] and has the form

D̂ = exp[â†α̂(t ) − α̂†(t )â], (A1)

where we have introduced the effective-field operator α̂(t ).
We apply this transformation to the master equation and define
the displaced density operator as

ρ̃ = D̂†ρ̂D̂. (A2)

Now, the idea is that one optimizes α̂ in order to decouple
the BM from the QS, such that the density operator of the
BM is, to good approximation, in a thermal state [Eq. (26)].
To achieve this, we assume Ŝ and the effective-field α̂ are
sufficiently small and perform a second-order perturbation
theory for these operators.

We follow the steps of Ref. [14] and write down the dy-
namics of ρ̃ in the form

∂ρ̃

∂t
= Laρ̃ + Lbρ̃. (A3)

The first term is given by

Laρ̃ = ∂D̂†

∂t
D̂ρ̃ + ρ̃D̂† ∂D̂

∂t
(A4)

and originates from a possible explicit time dependence of
α̂. The second term, on the other hand, originates from the
displaced Lindbladian and reads

Lbρ̃ = D̂† ∂ρ̂

∂t
D̂ = − i[D̂†ĤD̂, ρ̃]

+ κ (n̄ + 1)D̃[â]ρ̃ + κ n̄D̃[â†]ρ̃. (A5)

Here, we have defined the displaced Hamiltonian D̂†ĤD̂ as
well as the dissipators D̃[â]ρ̃ = D̂†(D[â]ρ̂)D̂ and D̃[â†]ρ̃ =
D̂†(D[â†]ρ̂)D̂. In the following, we will give the explicit
forms of the two superoperators La and Lb.

1. Calculation of La

Since a finite occupation of the BM does not modify the La

term, we simply report the final result obtained in Ref. [14].
This result reads

Laρ̃ = −i

[
− iD̂† ∂D̂

∂t
, ρ̃

]
, (A6)

with

D̂† ∂D̂

∂t
=

(
â† ∂α̂

∂t
− ∂α̂†

∂t
â

)
+ 1

2

(
α̂† ∂α̂

∂t
− ∂α̂†

∂t
α̂

−
[
∂α̂†

∂t
, r̂

]
â − â†

[
r̂,

∂α̂

∂t

])
, (A7)

where we have defined r̂ = â†α̂ − α̂†â.

2. Calculation of Lb

When calculating Lb, we proceed according to Ref. [14] to find the displaced Hamiltonian

D̂†ĤD̂ ≈ Ã + B̃ + C̃. (A8)
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The terms Ã, B̃, and C̃ are given up to second order in the operators α̂ and Ŝ. The first term is the displaced Hamiltonian ĤS and
has the form

Ã = D̂†ĤSD̂ ≈ ĤS + [α̂†, ĤS]â + â†[ĤS, α̂] + 1
2 ([α̂†, ĤS]α̂ + α̂†[ĤS, α̂])

+ 1
2 ([α̂†â − â†α̂, [α̂†, ĤS]]â + â†[α̂†â − â†α̂, [ĤS, α̂]]). (A9)

The B̂ term is given by

B̃ = D̂†â†�̂SâD̂ ≈ â†�̂Sâ + α̂†�̂Sâ + â†�̂Sα̂ + α̂†�̂Sα̂

+ â†([α̂†, �̂S]â + â†[�̂S, α̂])â + 1
2 â†([α̂†, �̂S]α̂ + α̂†[�̂S, α̂])â

+ α̂†([α̂†, �̂S]â + â†[�̂S, α̂])â + 1
2 (â†[α̂†, α̂] − [α̂†, α̂†]â)�̂Sâ

+ â†([α̂†, �̂S]â + â†[�̂S, α̂])α̂ + 1
2 â†�̂S ([α̂†, α̂]â − â†[α̂, α̂])

+ 1
2 â†([α̂†â − â†α̂, [α̂†, �̂S]]â + â†[α̂†â − â†α̂, [�̂S, α̂]])â, (A10)

and the third term, Ĉ, is found to read

C̃ = D̂†[â†Ŝ + Ŝ†â]D̂ ≈ â†Ŝ + Ŝ†â + α̂†Ŝ + Ŝ†α̂ + â†([α̂†, Ŝ]â + â†[Ŝ, α̂]) + ([α̂†, Ŝ†]â + â†[Ŝ†, α̂])â. (A11)

At this point, the main difference from the derivation in Ref. [14] is that there is an additional dissipator. For the first term, we
obtain the same result, which is

D̃[â]ρ̃ = D̂†(2âρ̂â† − â†âρ̂ − ρ̂â†â)D̂

≈ 2âρ̃â† − â†âρ̃ − ρ̃â†â + 2âρ̃α̂† − α̂†âρ̃ − ρ̃α̂†â + 2α̂ρ̃â† − â†α̂ρ̃ − ρ̃â†α̂

+ 2α̂ρ̃α̂† − α̂†α̂ρ̃ − ρ̃α̂†α̂ + {([α̂†, α̂]â − â†[α̂, α̂])ρ̃â† + H.c.}
− 1

2 {â†([α̂†, α̂]â − â†[α̂, α̂])ρ̃ + H.c.} − 1
2 {ρ̃â†([α̂†, α̂]â − â†[α̂, α̂]) + H.c.}. (A12)

The new term that originates from thermal excitations is given by

D̃[â†]ρ̃ = D̂†(2â†ρ̂â − ââ†ρ̂ − ρ̂ââ†)D̂

≈ 2â†ρ̃â − ââ†ρ̃ − ρ̃ââ† + 2α̂†ρ̃â − âα̂†ρ̃ − ρ̃âα̂† + 2â†ρ̃α̂ − α̂â†ρ̃ − ρ̃α̂â†

+ 2α̂†ρ̃α̂ − α̂α̂†ρ̃ − ρ̃α̂α̂† + {â†ρ̃([α̂†, α̂]â − â†[α̂, α̂]) + H.c.}
− 1

2 {([α̂†, α̂]â − â†[α̂, α̂])â†ρ̃ + H.c.} − 1
2 {ρ̃([α̂†, α̂]â − â†[α̂, α̂])â† + H.c.}. (A13)

APPENDIX B: PROJECTING ON THE THERMAL STATE

We will now assume that

ρ̃ = ρ̂sys ⊗ ρ̂th + ξ̂ , (B1)

such that ξ̂ is a traceless operator and at least of second order
in perturbation theory, ρ̂sys is the density operator describing
the QS, and ρ̂th is the thermal state of the BM given by
Eq. (26).

In Ref. [14], the authors were able to find a good choice
for α̂ by simply collecting whenever â† was operating on ρ̃

from the left. This was possible since it was assumed that ρ̂th

had quasizero occupation, and therefore, they could neglect
the left operation of â on ρ̃. However, this is not possible for
nonvanishing occupation numbers.

In this more general case, we first collect all operators
in Eq. (A3) that are of first order in the operators Ŝ and α̂.
Setting the combination of all these terms to zero will result
in a condition for α which minimizes the coupling between
the BM and the QS. We will follow this procedure first by
collecting all first-order terms in Eqs. (A9), (A10), and (A11)

in

K̂0 = [Ê†
0 â + â†Ê0 + F̂ †

0 â†ââ + â†â†âF̂0, ρ̃]. (B2)

In this equation, we have collected linear terms in â and â† in

Ê0 = −∂α̂

∂t
− i[ĤS, α̂] − i�̂Sα̂ − iŜ. (B3)

In addition, we have also found cubic contributions that are
multiplied by

F̂0 = −i[�̂S, α̂]. (B4)

These cubic terms do not allow us to find a single QS operator
α̂ in order to achieve a vanishing first-order contribution.
Therefore, in order to be able to drop the term (B4) we have to
make an additional assumption to ensure that F̂0 is sufficiently
small. This is the case if

‖[�̂S, α̂]‖ � ‖�S + iκ‖‖α‖. (B5)
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With this property fulfilled, we can assume that F̂0 is of higher
order and can be neglected when calculating α̂.

Now, in the next step we want to collect all first-order
terms that originate from the dissipator. To do this, we use
the convention that whenever the Hamiltonian is already mul-
tiplied by the QS operator α̂ from the left, we shift all bosonic
operators to the left of the density operator. This is enabled
by explicitly using the fact that the BMs are in a thermal state
[Eq. (26)] and using the relation

ρ̂thâ† = n̄

n̄ + 1
â†ρ̂th. (B6)

Collecting all QS operators that are in front of â† and mul-
tiplied from the left to the QS operator, we obtain, for the
expression in Eq. (A12),

Ê1 = κ (n̄ − 1)α̂. (B7)

Using the same method for Eq. (A13), we find

Ê2 = −κ n̄α̂. (B8)

Adding those two terms yields Ê1 + Ê2 = −κα̂, and collect-
ing all first-order terms, we can rewrite them as a single
commutator,

K̂ = [Ê†â + â†Ê , ρ̃], (B9)

with Ê = Ê0 + Ê1 + Ê2, which can be written as

Ê = −∂α̂

∂t
− i[ĤS, α̂] − i�̂Sα̂ − iŜ − κα̂. (B10)

With the help of this equation we now choose α̂ such that
Ê = 0. Inserting this α̂ in the master equation and tracing over
the BM degrees of freedom, we find the master equation (27).
For completeness, we also report the effective Hamiltonian,
which can be directly calculated from Eqs. (A9), (A10), and
(A11) and has the form

Ĥeff = ĤS − i

2

(
α̂† ∂α̂

∂t
− ∂α̂†

∂t
α̂

)
+ α̂†�̂Sα̂

+ 1

2
([α̂†, ĤS]α̂ + α̂†[ĤS, α̂]) + α̂†Ŝ + Ŝ†α̂

+ in̄

2

([
∂α̂†

∂t
, α̂

]
−

[
α̂†,

∂α̂

∂t

])

+ n̄

2
([[α̂†, ĤS], α̂] + [α̂†, [ĤS, α̂]]) + n̄�̂S. (B11)

In this expression, we have explicitly used assumption (B5).
Now, using Ê = 0, we finally arrive at Eq. (28) of the main
text.
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