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Adiabatic control of decoherence-free subspaces in an open collective system
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We propose a method to adiabatically control an atomic ensemble using a decoherence-free subspace (DFS)
within a dissipative cavity. We can engineer a specific eigenstate of the system’s Lindblad jump operators by
injecting a field into the cavity which deconstructively interferes with the emission amplitude of the ensemble.
In contrast to previous adiabatic DFS proposals, our scheme creates a DFS in the presence of collective
decoherence. We therefore have the ability to engineer states that have high multiparticle entanglements which
may be exploited for quantum information science or metrology. We further demonstrate a more optimized
driving scheme that utilizes the knowledge of possible diabatic evolution gained from the so-called adiabatic
criteria. This allows us to evolve to a desired state with exceptionally high fidelity on a timescale that does not
depend on the number of atoms in the ensemble. By engineering the DFS eigenstate adiabatically, our method
allows for faster state preparation than previous schemes that rely on damping into a desired state solely using
dissipation.
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I. INTRODUCTION

The control of quantum systems is at the core of many
groundbreaking scientific advancements. For example, laser
cooling and trapping [1] have given rise to optical tweezers
[2] and realizations of atomic condensates [3,4]. Other pio-
neering fields such as quantum computation and metrology
rely on quantum control to prepare and study useful quantum
states which can be seen as quantum state engineering. This
has led to rapid progress in quantum supremacy experiments
[5,6] and tests of relativity using atomic clocks [7–9]. A
common procedure to achieve the desired state evolution in
these quantum platforms with high fidelity is to require that
the dynamics during the state engineering process remains
adiabatic [10–14].

However, the investigation of such controlled quantum
systems as platforms for quantum computation, memory,
metrology, and simulation is often limited experimentally due
to decoherence induced by the system’s coupling to its en-
vironment [15–27]. As a result, many schemes have been
developed to evolve the system in a dark state so that the sys-
tem does not undergo any nonunitary evolution [28]. Common
procedures for achieving this in the presence of sponta-
neous emission are stimulated Raman transitions [29–32],
stimulated Raman adiabatic passage [33–35], and electromag-
netically induced transparency [36–38], which all are coherent
schemes that utilize quantum interference effects to achieve
dynamics entirely in the ground-state manifold. However,
procedures that rely entirely on coherent dynamics restrict
the scope of what may be studied. This is because superpo-
sitions between electronic ground and excited states cannot
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be maintained due to the decay of coherences from the finite
lifetime of the excited state. Furthermore, these schemes are
single-particle control procedures and therefore cannot readily
be used to generate, in a controllable manner, collective states
with multiparticle correlations that might be exploited. To
overcome this limitation, one can instead prepare the system
in a dissipative dark state in which deconstructive interfer-
ence allows a system to evolve with a suppressed rate of
decoherence even in the presence of a large excited-state
population. An example of this is many-body subradiant states
[23,32,39–42], although these states are often not pure.

A well-studied protocol to create dark states that remain
pure in the presence of decoherence is the preparation of
the system in a so-called decoherence-free subspace (DFS).
Here a system remains pure because it is constructed to
be in a subspace spanned by the eigenstates of all of the
system’s Lindblad jump operators and therefore undergoes
solely coherent dynamics (i.e., noiseless evolution) within
this subspace [43–45]. Counterintuitively, decoherence in the
presence of a DFS generates coherences between the DFS
eigenstates and states outside the DFS manifold so that the
system tends to damp into the DFS, as exploited in [46].
In addition, a Hamiltonian may be added to exactly cancel
these coherences in order to create a dynamically stable DFS
[47]. This makes the use of DFS a promising tool for real-
izations of quantum metrology and information procedures
[22–24,46,48–52]. However, the system may have a long
relaxation time and therefore increase the chance of other
sources of experimental noise to become relevant.

Combining the consideration of quantum control, stability
to decoherence, and evolution time, it is thus desirable to cre-
ate a DFS adiabatically, and procedures have been proposed
to achieve this [53–55]. In these procedures, a system will
adiabatically follow the DFS eigenstates provided a so-called
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adiabaticity criterion is satisfied [54]. These adiabatic DFS
schemes have only been applied for single-particle control
and therefore have been limited in scope. In this paper we
introduce a scheme to adiabatically control an atomic spin
ensemble interacting with a highly dissipative cavity. By driv-
ing the cavity with a light field that deconstructively interferes
with the emission amplitude of the atoms, we can engineer
the system to evolve into a specific eigenstate of the system’s
jump operator. Furthermore, we use the adiabatic criterion to
develop a driving scheme that can achieve extremely high fi-
delities on short timescales even in the presence of large atom
numbers. As a specific example, we demonstrate how to create
a metrologically useful dissipative state, which is similar to
the one studied in [46], adiabatically, which is advantageous
as this state cannot be obtained simply by a sudden parameter
quench.

The article is organized as follows. We begin with a review
of the requirements for a dynamically stable DFS in Sec. II.
We then derive the collective atomic-cavity interaction model
in Sec. III. In Sec. IV we introduce a method to compute the
jump operator’s eigenvectors that will define the DFS as well
as its orthogonal complement. In Sec. V we show an adiabatic
protocol to prepare the atom in the DFS. We conclude with an
outlook and discussion of future work in Sec. VI.

II. DYNAMICALLY STABLE DECOHERENCE-FREE
SUBSPACES

We first briefly review the criterion for a pure and dynam-
ically stable DFS eigenstate that we consider throughout the
paper. The dynamics of the density operator ρ̂(t ), describing
the studied quantum states, is governed by a Born-Markov
master equation

∂ρ̂

∂t
= L̂ρ̂ := 1

ih̄

[
Ĥ, ρ̂

] +
∑

i

D̂
[
L̂i

]
ρ̂, (1)

where L̂ is the Liouvillian superoperator. The coherent dy-
namics is governed by the Hamiltonian Ĥ and the dissipation
is described by the Lindblad jump operators L̂i using the
Lindblad superoperator

D̂
[
L̂i

]
ρ̂ = L̂iρ̂L̂†

i − 1
2

(
L̂†

i L̂iρ̂ + ρ̂L̂†
i L̂i

)
. (2)

As formulated in [47,54], a dynamically stable DFS in
which the basis states remain pure, e.g., ρ̂2(t ) = ρ̂(t ), is de-
fined by two necessary and sufficient conditions.

(i) The first condition is the general Lidar-Chuang-Whaley
theorem [43], which requires that all basis states {|m〉} of a
DFS HDFS = span[{|m〉}] are degenerate eigenstates of all L̂i,

L̂i|m〉 = �i|m〉, (3)

for every i and |m〉 ∈ HDFS.
(ii) The second condition requires that HDFS is invariant to

the effective Hamiltonian

Ĥeff = Ĥ + ih̄

2

∑
i

[
�∗

i L̂i − �iL̂
†
i

]
(4)

such that the DFS basis states satisfy the condition

〈n⊥|Ĥeff|m〉 = 0 (5)

FIG. 1. (a) Schematic diagram of our system with N atoms
trapped at the antinodes of a cavity. (b) Level diagram of the four-
level internal structure of atom j.

for every |m〉 ∈ HDFS and |n⊥〉 ∈ HCS, where HCS is the or-
thogonal complement of HDFS.

In this paper we consider dynamically varying the
Hamiltonian Ĥ = Ĥ (t ) and jump operators L̂ j = L̂ j (t ). Con-
sequently, the DFS will also change in time and one can
ask whether we will dynamically stay in a DFS during the
system’s evolution. We now follow Ref. [54], where it was
shown that a pure state initialized in the DFS at t = 0 will
remain in the DFS provided the basis of HDFS and HCS are
continuous with time and fulfill the adiabatic condition

�(t ) = max
m,n

∣∣∣∣4〈n⊥|∂t |m〉
αmn + iζn

∣∣∣∣ � 1 (6)

for every |m〉 ∈ HDFS and |n⊥〉 ∈ HCS. In Eq. (6) we
have introduced h̄αmn = 〈n⊥|Ĥeff|n⊥〉 − 〈m|Ĥeff|m〉 and ζn =∑

i〈n⊥|(L̂†
i − �∗

i )(L̂i − �i )|n⊥〉/2. In the following sec-
tions we will use these conditions to derive a unique driving
profile in a collective spin system to adiabatically follow a
many-body DFS eigenstate.

III. COLLECTIVE SPIN-FLIP MODEL

We now study the collective spin system shown in Fig. 1(a).
We consider N identical four-level atoms that couple to a sin-
gle mode of an optical cavity with identical coupling constant
g. This can be achieved by trapping the atoms at the antinodes
of the cavity mode function. Cavity photons with frequency ωc

decay into free space at rate 2κ and are driven externally by
a laser field with pump strength η through the cavity mirrors.
The atoms are also driven by two additional laser fields �1

and �2, with frequencies ω1 and ω2, respectively, that couple
different states than the cavity field [see Fig. 1(b)]. The inter-
nal structure of atom j is depicted schematically in Fig. 1(b),
where each atom has two ground states |↓〉 and |↑〉 and two
excited states |l〉 and |r〉 with bare frequencies ωl and ωr with
respect to the frequency of |↓〉. Note that the correct couplings
with the cavity and classical fields can be accomplished in
physical systems using hyperfine split states [56,57], states in
different hyperfine manifolds [46,58–60], or two-component
Bose-Einstein condensates [61,62].

In the regime where the driving lasers corresponding to �1

and �2 are off-resonant, �l ,�r 
 �1,�2, we eliminate the
two excited states |l〉 and |r〉, resulting in an effective master
equation for N two-level atoms with states |↓〉 and |↑〉 that
couple to the single cavity mode. Here we define the large de-
tunings �l = (ω1 + ω2)/2 − ωl and �r = ω2 − ωr between
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the driving lasers and the upper-state manifold. In the follow-
ing, we eliminate the cavity mode, assuming that the typical
lifetime of a cavity photon is much shorter than the typi-
cal timescale of a collectively enhanced two-photon Raman
process, κ 
 √

Nη,
√

NS1,
√

NS2, with S1 = g|�1|/(2|�l |)
and S2 = g|�2|/(2|�r |). The result of this calculation is an
effective master equation describing the driven-dissipative dy-
namics of N two-level atoms with states |↓〉 and |↑〉. For
details of the derivation of the effective master equation, we
refer the reader to Appendix A.

This effective master equation governs the dynamics of the
atomic density matrix ρ̂at and reads

∂ρ̂at

∂t
= L̂atρ̂at := 1

ih̄

[
Ĥat, ρ̂at

] + D̂
[
L̂
]
ρ̂at, (7)

with the effective jump operator

L̂ =
√


c(Ĵ− + μ2Ĵ+ + χ Î) (8)

and the effective Hamiltonian given by

Ĥat = h̄ν

2
L̂†L̂. (9)

Here we use the definition of the collective raising Ĵ+ and
lowering operators Ĵ− defined by

Ĵ+ =
N∑

j=1

|↑〉 j〈↓| j = (Ĵ−)†. (10)

The rate


c = 2κS2
1

�2
c + κ2

(11)

is the cavity-induced spontaneous emission rate from |↑〉 to
|↓〉, with the cavity detuning �c = (ω1 + ω2)/2 − ωc. In ad-
dition, we define the ratios

μ =
√

S2

S1
, χ = η

S1
, (12)

and ν = �c/κ , where we make an assumption of the phase of
η as discussed in Appendix A 2. We can now apply the results
that we have reviewed in Sec. II. In fact, it is rather easy to
see that both conditions to obtain a DFS are fulfilled by a dark
state |�D〉 of L̂ with

L̂|�D〉 = 0, (13)

because we directly obtain L̂at|�D〉〈�D| = 0. As a direct re-
sult, all states that fulfill Eq. (13) span a DFS and we can
engineer this state by modifying the ratios μ and χ of the
external driving lasers. This rather mathematical description
of the system has a very simple physical explanation. An
atomic ensemble in an eigenstate |�〉 of L̂ gives rise to a cavity
field with a certain amplitude a. This can best be seen by
examining the Hamiltonian before the adiabatic elimination
of the cavity field [see Eq. (A11)]. Here we have a term in
the Hamiltonian which is proportional to â†L̂ + L̂†â. We can
decompose the operator L̂ = √


c(L̃ + χ ) into a first term
L̃ = Ĵ− + μ2Ĵ+ that depends on the atomic state and a sec-
ond term that originates from the external driving field χ .

FIG. 2. Sketch of the general idea behind engineering a dark
state in a cavity. The emission amplitude of the atomic state (top) is
canceled by an external driving laser (middle) resulting in a zero pho-
ton field (bottom). Note that this effectively makes the atom-cavity
system a perfectly reflective mirror for the external driving light.

Tracing over the atomic degrees of freedom while assuming
the atomic state |�〉, we find that the cavity mode is driven
by â†(a + χ ) + (a + χ )∗â and aext = χ . In this picture, a
can be interpreted as the light field which is created by the
spin configuration in the state |�〉. We can now cancel this
coherent driving exactly if we set aext = −a, meaning that
the driving light exactly destructively interferes with the light
emitted by the spin ensemble. In this case, the atomic state
remains in a dark state and is therefore unperturbed by the
cavity field (see Fig. 2).

This driving field only vanishes exactly if the atomic state
is an eigenstate of L̂ and therefore of L̃. Otherwise, the
feedback of the cavity would modify the spin state. The di-
agonalization of this operator is the topic of the next section.
At this point, we want to remark that L̂ commutes with the
total length of the Bloch vector Ĵ2 [63]. Since a natural initial
state for this system is the state where all atoms are either in
|↑〉 or in |↓〉, we restrict ourself to the state space within the
manifold of N + 1 symmetric Dicke states |J = N/2, m〉, with
m = −N/2,−N/2 + 1, . . . , N/2.

IV. DIAGONALIZATION OF THE JUMP OPERATOR

A. Schwinger boson representation

For analytic ease in finding the dark state of Eq. (8), we
utilize the Schwinger boson representation [64] to represent
the symmetric Dicke states of the system. Here we introduce
two modes with creation (annihilation) operators b̂†

↑ (b̂↑) and

b̂†
↓ (b̂↓) which represent the creation (annihilation) of a parti-

cle in the states |↑〉 and |↓〉, respectively. With this Schwinger
boson representation, we can then write the operator L̂ as a
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non-Hermitian quadratic operator

L̂ = b̂
†
Lb̂ + χ, (14)

with

L =
(

0 μ2

1 0

)
(15)

and b̂ = (b̂↑, b̂↓)T . Although L is not Hermitian, we can
still diagonalize it if μ �= 0. In that case, we find the unnor-
malized eigenvectors V such that L = V DV −1, where D =
diag(μ,−μ) is the eigenvalues matrix of L. The matrix of V
is given by

V =
(

μ −μ

1 1

)
. (16)

B. Generalized eigenvectors

Using the form of V , we can then define the operators ĉ =
V †b̂ and d̂ = V −1b̂ with ĉ = (ĉ1, ĉ2)T and d̂ = (d̂1, d̂2)T such
that we can rewrite

L̂ = μ
[
ĉ†

1d̂1 − ĉ†
2d̂2

] + χ. (17)

Using [d̂i, ĉ†
j ] = δi j , we find the eigenvectors of the jump

operator in Eq. (8) in the general form

|ψk〉 = Nk
(
ĉ†

1

)N−k(
ĉ†

2

)k|0〉, (18)

where Nk is a normalization factor that is derived in
Appendix B [see Eq. (B11)] and k ∈ {0, 1, 2, . . . , N}. Since
the system evolves in the symmetric Dicke space, there are
N + 1 eigenvectors that are in general nonorthogonal because
[ĉ1, ĉ†

2] �= 0. The eigenvectors have the eigenvalues

L̂|ψk〉 = [μ(N − 2k) + χ ]|ψk〉. (19)

For a given k, we can now create a unique DFS that con-
tains only one eigenvector HDFS,k = span[{|ψk〉}] by choosing
χ = −μ(N − 2k). This consideration is only true for μ �= 0,
while for μ = 0 there is only a single one-dimensional DFS
corresponding to all atoms in the |↓〉 state for the choice
χ = 0. To emphasize that the states in this DFS are in general
nontrivial, coherent, and entangled states, we focus now on the
case μ = 1. In that case, the eigenstates of the jump operator
become eigenstates of Ĵx = (Ĵ+ + Ĵ−)/2 which are useful for
applications in quantum metrology. It is constructive to exam-
ine the different DFS eigenstates using the collective Bloch
sphere, as shown in Fig. 3. Here we calculate the overlap
|〈θ, φ|ψk〉|2 of the kth DFS eigenstate with the spin coherent
state,

|θ, φ〉 = 1√
N!

[
cos

(
θ

2

)
b̂↑ + sin

(
θ

2

)
eiφ b̂↓

]N

|0〉, (20)

on the sphere’s surface pointing in the direction given by its
polar and azimuthal angles θ and φ. The k = 0 state, shown in
Fig. 3(a), represents a coherent spin state in which every atom
is in the state |+〉 j = (|↑〉 j + |↓〉 j )/

√
2. The k = N state is

the opposite coherent spin state with every atom in the |−〉 j =
(|↑〉 j − |↓〉 j )/

√
2 state. Meanwhile, for the eigenstates in

between these extreme k values, the ensemble becomes an
entangled state that is a superposition of every permutation

FIG. 3. Collective Bloch sphere of the DFS eigenstates |ψk〉
when μ = 1. The color at each point is calculated by finding the over-
lap with the state at a certain point on the sphere, |〈θ, φ|ψk〉|2. We
show the eigenstates (a) k = 0, (b) k = 1, (c) k = N/4, and (d) k =
N/2 for an atom number N = 20. All distributions are normalized
such that bright yellow regions represent states where the overlap is
maximized, while dark blue regions correspond to |〈θ, φ|ψk〉|2 ≈ 0.

of N − k atoms in |+〉 j and k atoms in |−〉 j . Representing
the eigenvectors on the collective Bloch sphere, we find ver-
tical rings of varying radius with 〈Ĵx〉 as its symmetry axis,
as demonstrated in Figs. 3(b) and 3(c) for the cases k = 1
and k = N/4, respectively. The largest radius ring is the one
corresponding to the k = N/2 state, which lies along the line
of longitude at 〈Ĵx〉 = 0, as shown in Fig. 3(d). It consists of
an equal number of atoms in |+〉 j and |−〉 j and is therefore
naturally a dark state of the system, with a Ĵx eigenvalue of
0. It has been demonstrated [46] that the k = N/2 state for
μ = 1 − ε with a small parameter ε can be metrologically
useful for atomic clocks as its variance in Ĵy scales at the
Heisenberg limit.

C. Adiabatic evolution and the orthogonal
complement of DFS eigenstates

In the next section we are interested in guiding the system
dynamically through a DFS. Therefore, it will be important
that we dynamically ensure that for a given k ∈ {0, . . . , N}
we have

χ (t ) = −μ(t )(N − 2k). (21)

In addition, it is important to quantify if the system leaves
the DFS and enters the orthogonal complement. Since L̂ is
a quadratic operator, we can find the orthogonal complement
of the DFS eigenstate |ψk〉 as HCS,k = span[{|ψ⊥

n 〉, n �= k}],
which is the biorthogonal basis of the symmetric Dicke states,
up to normalization. Here we define

|ψ⊥
n 〉 = (2μ)NN⊥

n

(
d̂†

1

)N−n(
d̂†

2

)n|0〉, (22)

with a normalization N⊥
n that is given by Eq. (B21). These

states satisfy the relation

〈ψ⊥
n |ψk〉 = (2μ)NNkN⊥

n (N − k)!k!δk,n. (23)
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FIG. 4. (a) Purity P and (b) fidelity Fk during a linear sweep
of μ for β = 1

20 (orange solid curve), β = 1
40 (red dashed curve), and

β = 1
80 (blue dotted curve). Here, there are N = 20 atoms, we choose

to create the state k = 0, and we set the parameters in units of 
c. We
further assume ν = 0.

V. ADIABATIC DECOHERENCE-FREE SUBSPACE

We assume throughout this section that the system begins
the process in the collective ground state |↓〉N at μ(t = 0) =
0. This is the unique DFS and steady state for χ (t = 0) = 0,
meaning that at t = 0 the lasers driving the |↓〉 → |r〉 transi-
tion and the cavity mode are switched off, �2 = η = 0. On
the other hand, the laser driving the |↑〉 → |l〉 transition is
switched on and will not be dynamically changed, �1(t ) =
const. This results in a time-independent value of 
c [see
Eq. (11)].

A. Linear scheme

To exemplify the adiabatic creation of a desired DFS eigen-
state, we first assume

μ(t ) = βt, (24)

with coefficient β = 1/t f such that |�1| is a constant and
|�2| has a parabolic profile that reaches |�1| = |�2| at the
final time t f . The atomic state begins the process in its col-
lective ground state ρ̂at(0) = |N/2,−N/2〉〈N/2,−N/2| and
we sweep μ with the desire that the atomic state finishes
the process in a state that has a high overlap with the kth
Ĵx eigenstate ρ̂at(t f ) ≈ |ψk (μ = 1)〉〈ψk (μ = 1)|. It stands to
reason that the slower one sweeps μ, the more adiabatic the
dynamics becomes. This intuition is demonstrated for three
different values of β in Fig. 4. In Fig. 4(a) we plot the purity
P (t ) = Tr[ρ̂2

at] of the collective atomic state which becomes
P = 1 when the ensemble is in a pure state, while Fig. 4(b)
examines the Uhlmann-Jozsa fidelity [65]

Fk =
(

Tr
√√

ρ̂at|ψk〉〈ψk|
√

ρ̂at

)2

= 〈ψk|ρ̂at|ψk〉 (25)

of the dynamical atomic state with the desired instantaneous
DFS eigenstate. The plots illustrate the loss of both the final
purity and final fidelity when β is increased as diabatic dy-
namics causes the collective atomic state to dynamically trans-
fer population from the desired |ψk〉 state to the neighboring
eigenstates |ψk±1〉. Before studying this behavior in further
detail, we first note that Fig. 4 suggests that a high final fidelity
Fk, f ≡ Fk (t f ) corresponds to a high final purity P (t f ) of the
state. However, a low fidelity does not necessarily correlate

FIG. 5. Fidelity Fk with the states (a) k = 0 and (b) k = N/2 for
a linear scheme (24) with t f = 40/
c. We again have ν = 0. The dif-
ferent curves represent different atoms numbers, with the small atom
number N = 1, 2 (orange solid curves), N = 10 (magenta dashed
curve), N = 20 (red dotted curve), N = 40 (cyan dash-dotted curve),
and N = 80 (blue dashed curve). The inset in (b) depicts the behavior
of the fidelity for large values of μ.

to a low purity as μ can be swept fast enough (β 
 1) that
the collective state remains approximately in its pure, but un-
desired, ground state ρ̂at(t f ) ≈ |N/2,−N/2〉〈N/2,−N/2|. We
therefore choose to focus on the dynamical evolution of Fk to
measure the level of success of our driving schemes for the
rest of our analysis. An important question for experimental
realizations of our adiabatic DFS scheme is how the loss of
fidelity associated with nonadiabatic dynamics scales with the
number of atoms in the ensemble N . The results are displayed
in Fig. 5 for k = 0 [Fig. 5(a)] and k = N/2 [Fig. 5(b)] when
t f = 40/
c. We notice in both plots that as N increases, the
final fidelity Fk, f decreases rather significantly. However, the
dynamical evolution reveals that for increasing N , the state
ρ̂at remains approximately in the desired |ψk〉〈ψk| state for
a longer duration of the sweep before dropping to its lower
final value. The rate of the decay to Fk, f therefore becomes
larger for increasing N . To explain the behavior displayed in
Fig. 5 in order to produce a driving scheme that can rectify
the scaling of Fk, f with N , we now turn to the adiabaticity
criterion introduced in Eq. (6).

B. Adiabatic criteria

The full calculation of the adiabaticity parameter is rather
tedious and thus saved for Appendix C with the main results
given by

�k = μ̇


c

√
1 + ν2

ξk, (26)

with the dimensionless parameter

ξk = max
n=k±1

∣∣∣∣ 4〈ψ⊥
n |Ĵ z|ψk〉

μ[2μ2 + (1 − μ4)〈ψ⊥
n |Ĵ z|ψ⊥

n 〉]

∣∣∣∣. (27)

The maximization can be taken only over n = k ± 1 since the
explicit time derivative visible in Eq. (6) only couples to the
neighbors of k [see Eq. (C2)]. The quantity ξk reaches its
maximum for large values of N close to μ = 1. We there-
fore define the value ξk (μ = 1) = ξk, f as it can be calculated
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FIG. 6. Ratio ξk/ξk, f [see Eqs. (27) and (28)] as a function of
μ for (a) k = 0 and (b) k = N/2. The curves are for small atom
numbers N = 1, 2 (orange solid curves), N = 10 (magenta dashed
curve), and N = 80 (blue dotted curve).

analytically

ξk, f =
{√

(N − k)(k + 1), k < N
2

√
(N − k + 1)k, k � N

2 .
(28)

For an adiabatic evolution we require �k � 1. The result of
Eq. (28) shows that ξk, f increases with the number of atoms
N . Consequently, in order to fulfill the adiabatic criterion
�k � 1, we require μ̇ to decrease with the atom number.
This shows that a constant slope ramp μ̇ = const should fail
in the large-N limit, which is consistent with our findings in
Fig. 5. To study this effect further, we now examine the adi-
abaticity parameter for values μ ∈ [0, 1] in Fig. 6 by plotting
the ratio ξk/ξk, f as a function of μ for different values of
N when ν = 0. Figure 6(a) shows the case k = 0. For the
example N = 1, Eq. (28) gives us ξk, f = 1 and the maxi-
mum value of the adiabaticity parameter clearly is obtained
at μ = 0, where we have ξk = 8. Combining this analysis
with the adiabaticity criterion �k � 1 and using the values
of t f = 40/
c that we have used in the preceding section, we
find that μ̇ = 
c/40 = 
c/(5 max(ξk )). This choice of μ̇ is
sufficient to satisfy the adiabaticity criterion μ̇ � 
c/ξk for
the whole driving process such that adiabatic following of the
desired state can occur. Moreover, Fig. 6(b), which displays
the ratio for k = N/2, demonstrates that this choice of μ̇ is a
suitable value for N = 2. However, this value of μ̇ is no longer
satisfactory for larger values of N as the final value of ξk

scales as

ξk, f ∼
{√

N, k = 0
N
2 , k = N

2 .
(29)

leading to nonadiabaticity which reduces Fk, f as N increases,
which explains the behavior that was seen in Fig. 5. This scal-
ing can be interpreted as follows. The time derivative of the
eigenstates act as a raising and lowering operator to the two
nearest eigenstates k ± 1. It is this coupling that causes the
diabatic evolution and since this coupling is induced through
a cavity mode, it is collectively enhanced by the number of
atoms in the cavity. This coupling also depends on k as it is
larger for the eigenstates corresponding to k ∼ N/2 than it is
for the eigenstates on the edge k ∼ 0 and k ∼ N . This can
be explained in the full 2N basis by noting that the number
of permutations is

(N
k

)
, so middle states have many more

individual atomic state combinations than the states on the
edge. There are thus, in a sense, more avenues for the k = N/2
state to leak to the k = N/2 ± 1 states than there are for the
k = 0 state to leak to k = 1. Note that ξk, f is approximately
the maximum value of ξk , which occurs slightly before t f , and
the relative difference between the maximum value and ξk, f

decreases with increasing N .
Another interesting feature displayed in Fig. 5 can now be

explained using the adiabaticity criterion �k � 1. We have
demonstrated that the collective atomic state remains at a
near-perfect fidelity ρ̂at ≈ |ψk〉〈ψk| for a longer duration of
the sweep of μ for increasing atom number. Figure 6 clarifies
this behavior as ξk remains approximately zero such that even
choosing a very fast ramp μ̇ 
 1/
c still can satisfy the
adiabaticity criterion. This fast ramp can be performed over
a larger parameter space in μ if the number of atoms N is
increased. Close to μ � 1, however, the value of ξk rapidly
increases to a value that grows with N [see Eq. (29)]. Thus,
for this final stage, we have to choose a ramping speed μ̇

that is reduced with N in order to remain adiabatic. Some-
what counterintuitively, the fastest dynamics can occur when
the splitting 2μ between neighboring eigenstates in the jump
operator’s eigenspectrum is at its smallest, while it must be
slow when the splitting is largest. This is because the overlap
between neighboring eigenstates [given in Eq. (B10)] is very
large |〈ψk±1|ψk〉|2 ∼ 1 for a majority of the evolution before
rapidly decreasing towards its final value of zero. All these
observations now allow us to construct a simple yet efficient
driving scheme that produces a value of Fk, f that is robust as
the atom number increases.

C. Quench scheme

The analysis of the adiabatic parameter in the preceding
section implies that the dynamical evolution of μ can be
very rapid for small values of μ before reaching a point
where ξk becomes very large. This suggests that a constant
μ̇ profile is not the most efficient driving profile. Instead,
it is sufficient to simply use a continuous piecewise linear
μ profile which has an extremely steep initial slope when
ξk � 1 and then becomes very gradual around the time when
ξk suddenly increases towards ξk, f . In the extreme limit, we
have a scheme which quenches to a value of μ at t = 0 and
then gradually evolves the system for the rest of the process
until μ = 1,

μ =
{

0, t < 0,

βqt + C, 0 � t � t f ,
(30)

where C = 1 − βqt f . With the choice βq = q/(t f N ) we can
use Eq. (28) to choose a t f and constant q that satisfy βq �

c/ξk such that the dynamics remains adiabatic during the
sweep. Therefore, the only significant diabatic evolution oc-
curs at the t = 0 when μ jumps to

C = 1 − q

N
, (31)

which is quickly rectified by the system damping back into the
DFS eigenstate. We illustrate the advantage of our quenching
scheme in Fig. 7, where we choose q = √

N for the case k = 0
[Figs. 7(a) and 7(c)] and select q = 2 for k = N/2 [Figs. 7(b)
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FIG. 7. (a) and (b) Ratio μ and (c) and (d) fidelity Fk using the
quench scheme (30) with the desired states (a) and (c) k = 0 and
(b) and (d) k = N/2. The parameters and curve colors are the same
as in Fig. 5. The initial fidelities in (c) are 1 (N = 1), 0.0216 (N =
10), 7.99 × 10−5 (N = 20), 4.3 × 10−10 (N = 40), and 6.21 × 10−21

(N = 80). The initial fidelities in (d) are 1 (N = 2), 0.731 (N = 10),
0.548 (N = 20), 0.398 (N = 40), and 0.285 (N = 80).

and 7(d)] such that μ̇ξk, f ∼ 1/(40
c). Therefore, as the atom
number increases, we quench to a larger value of μ(t = 0) =
1 − 1/

√
N and then dynamically evolve μ with a lower slope

so that the system’s dynamics remain adiabatic, as shown in
Figs. 7(a) and 7(b). At the quench t = 0, the fidelity may be
calculated using |〈ψk (μ = 0)|ψk (μ = 1 − q/N )〉|2 = N 2

k N!
and Eq. (B11), which reveals a scaling that decreases as N
increases. Meanwhile, Figs. 7(c) and 7(d) display an enhance-
ment of Fk, f compared to Fig. 5 as all fidelities end above 0.99
using the quench scheme. Moreover, there is an enhancement
of Fk, f for large atom numbers compared to the single- and
two-atom cases. This enhancement grows slightly with N due
to the relative difference between max(ξk ) and ξk, f decreasing
with increasing N , suggesting our choice of μ̇ becomes better
when more atoms are in the system. It must also be noted that
the state reaches exactly μ = 1, which is in contrast to the
scheme proposed in [46], where one quenches to μ = 1 − ε,
for a small constant ε, and then lets the system damp back
into the desired state. With this purely quench scheme, one
can only achieve the k = N/2 state, must wait a exceedingly
long time for the system to reach steady state, and may not
damp to exactly μ = 1 as the system would equilibrate in an
unpure, fully mixed state since the eigenstates are degenerate.
The study of how the quantum metrological usefulness of
the state, i.e., the quantum Fisher information, varies with ε

is a subject left for future work. Finally, we demonstrate in
Fig. 8(a) that one must make the correct choice of q to achieve
the desired dynamics. Here we consider the case k = 0 and
examine the value of 1 − Fk, f as a function of q for three
different atom numbers. For the points that we calculate, the
maximum values of the final fidelity for the cases N = 10 (or-
ange circles), N = 20 (red pluses), and N = 40 (blue crosses)
are obtained at q/N = 0.184, 0.136, and 0.098, respectively.
We see that for N = 10, the maximum final fidelity is obtained

FIG. 8. (a) Difference of the final fidelity and unity 1 − Fk, f as a
function of the number q/N for N = 10 (orange circles), N = 20 (red
pluses), and N = 40 (blue crosses). This changes the value of μ(t =
0) and the slope of the linear ramp as we quench to different values.
(b) Final fidelity as a function of atom number for the cases q = √

N
(orange solid curve with circles) and q = 2 (magenta dashed curve
with pluses). Both plots have k = 0, t f = 40/
c, and ν = 0.

when q ≈ 2. As N increases, however, the maximum final
fidelity occurs at a value of q that approaches

√
N , which was

the value used in Figs. 7(a) and 7(c). We examine this behavior
further in Fig. 8(b), where we plot the final fidelity obtained
with the choices q = √

N (orange solid curve with circles) and
q = 2 (pink dashed curve with pluses) as a function of atom
number. We see that the original choice of q = √

N allows
for a robust final fidelity that is extremely high Fk, f > 0.99,
while Fk, f in the q = 2 case drops off rather quickly with
increasing N . As shown in Figs. 7(a) and 7(b), μ in the q = 2
case quenches to a higher value before evolving with a more
gradual slope as compared to q = √

N . Therefore, we find
for large N that the q = 2 case cannot reach as high of a
final fidelity as q = √

N even though its dynamics are “more
adiabatic.” The reason for this is that the process with q = 2
for the given t f does not have enough time to fully damp back
into the DFS before ξk spikes towards its final value and the
dynamics becomes less adiabatic. This further demonstrates
why the choices of q used in Fig. 7 are (nearly) ideal, although
this may be optimized further, for example, by finding the
actual value of max(ξk ) to use for selecting the value of μ̇.
Furthermore, the choice of t f can also be varied to achieve
either faster dynamics or higher final fidelities and a poten-
tial trade-off relation between these two objectives would be
interesting to investigate, but we do not pursue this course of
action here.

VI. CONCLUSION AND OUTLOOK

In this work we proposed a protocol to adiabatically control
a many-body system interacting with a highly dissipative cav-
ity utilizing a DFS in the presence of collective decoherence.
We presented a method to analytically obtain the eigenstates
of a non-Hermitian quadratic jump operator utilizing the
Schwinger boson representation. We then used the criterion
for a dynamically stable DFS (5) to derive a cavity driving
profile which deconstructively interferes with the atomic en-
semble’s emission amplitude for a given DFS eigenstate. This
allowed us to engineer a desired Ĵx eigenstate by adiabatically
following the time evolution of a DFS eigenstate as the clas-
sical driving fields are varied, which we demonstrated using a
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linear increase of the ratio μ from 0 to 1. We then investigated
how quickly one may evolve the parameters of the system by
studying the adiabaticity parameter of the system. Here we
found that for N 
 1, one may vary μ extremely rapidly for
a majority of the process before the adiabaticity parameter
drastically increases towards a large final value such that the
evolution of μ needs to be gradual for the remainder of the
process. This motivated the introduction of a quench scheme
in which we quench to a value of μ = 1 − q/N and then
evolve the system gradually for the remainder of the process
with a slope that is modified for different atom numbers. This
scheme had the ability to adiabatically construct the desired
states with extremely high final fidelity Fk, f > 0.99 and we
showed that Fk, f increases with N . We concluded by investi-
gating the optimal value of q to maximize the final fidelity for
N 
 10. A more complicated driving profile of μ may allow
for even more optimized dynamics, but we did not pursue this
prospect in this work.

In our analysis, we have neglected single-atom sponta-
neous emission from the excited states |l〉 and |r〉 based
on large detuning �l ,�r 
 �1,�2,

√
Ng. While the use

of stimulated Raman transitions allows one to engineer an
artificial linewidth of the spins, decreasing the single-atom
linewidth will also decrease the collective emission rate

c. Therefore, an important experimental consideration is
the single-atom cooperativity parameter C, which must be
large in order to ignore single-atom emission throughout the
timescales used in Fig. 7.

To overcome the requirement of a large C cavity, one can
instead create a scheme that drives the system with dynamics
that need not be adiabatic. Therefore, a natural next step
is to develop an adiabatic shortcut to engineer an adiabtic
shortcut which can create a desired DFS eigenstate with ar-
bitrarily fast evolution time so long as one is provided with
arbitrary large driving intensities. Another requirement is that
the adiabatic drive must have enough time to begin to fol-
low the kth eigenstate as the eigenstates are degenerate at
the beginning of the process. With the addition of a second
classical drive of the cavity ηs, one can superadiabatically
create the spin coherent states k = 0, N using the shortcut
protocol developed in [54], but this fails to purely create the
ring states. This is because the kth DFS eigenstate evolves
with a certain amount of overlap with the two neighboring
eigenstates k ± 1 [see Eq. (C2)], and the shortcut drive is only
able to cancel out the overlap with one of these neighboring
states (determined by the sign of ηs) while it in fact enhances
the overlap with the other neighboring state. The spin co-
herent states are able to be created with ηs as each only has
one neighboring eigenstate. To overcome this limitation, one
might introduce an extra degree of freedom to the system in
order to remove the coupling to both neighboring eigenstates
and thus create every eigenstate, including the spin squeezed
k = N/2 state, with dynamics that does not need to be
adiabatic.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
MASTER EQUATION

1. Two-level Hamiltonian

We consider the cavity and four-level atom interaction
shown in Fig. 1, which has the many-body Hamiltonian in the
Schrödinger picture given by

Ĥ0 =
N∑

j=1

h̄ω↑
2

(|↑〉 j〈↑| j − |↓〉 j〈↓| j ) + h̄ωl |l〉 j〈l| j

+ h̄ωr |r〉 j〈r| j + h̄ωcâ†â + h̄(ηâ†e−iωd t + H.c.)

+ h̄g[(|l〉 j〈↓| j â + H.c.) + (|r〉 j〈↑| j â + H.c.)]

+ h̄�1

2
(|l〉 j〈↑| je

−iω1t + H.c.)

+ h̄�2

2
(|r〉 j〈↓| je

−iω2t + H.c.), (A1)

where we set the zero energy halfway between |↑〉 and |↓〉.
Here we define the annihilation (creation) operator â (â†) of
a cavity mode with frequency ωc and the bare frequencies
ω↑, ωl , ωr of the three states |↑〉, |l〉, |r〉, respectively, with
respect to the frequency of |↓〉. We also assume that spon-
taneous decay from |l〉 and |r〉 is negligible, γl ≈ γr ≈ 0, and
that the laser field that drives the cavity with amplitude η has
frequency ωd . We then move into the interaction picture that
induces the rotation ρ̂ → ˜̂ρ = Û ρ̂Û † with Û = exp[iĤ ′t/h̄].
Defining Ĵ z = ∑N

j=1(|↑〉 j〈↑| j − |↓〉 j〈↓| j )/2, we set

Ĥ ′ = h̄(ω1 − ω2)

2
Ĵ z

+
N∑

j=1

h̄ω2|r〉 j

〈
r
∣∣∣

j
+ h̄(ω1 + ω2)

2

(∣∣∣l〉
j
〈l| j + â†â)

(A2)

such that the Hamiltonian becomes

ĤI =h̄�↑Ĵ z − h̄�câ†â + h̄(ηâ†e−i�d t + H.c.)

−
N∑

j=1

h̄�l |l〉 j〈l| j − h̄�r |r〉 j〈r| j

+ h̄g[(|l〉 j〈↓| j â + H.c.) + (|r〉 j〈↑| j â + H.c.)]

+ h̄�1

2
(|l〉 j〈↑| j + H.c.) + h̄�2

2
(|r〉 j〈↓| j + H.c.),

(A3)

where we have introduced the detunings �↑ = ω↑ −
(ω1 − ω2)/2, �c = (ω1 + ω2)/2 − ωc, �l = (ω1 + ω2)/2 −
ωl , �r = ω2 − ωr , and �d = ωd − (ω1 + ω2)/2.

We now assume that the detunings of the laser fields
are very large |�l |, |�r | 
 �1,�2,

√
Ng to adiabatically
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eliminate the exited states |l〉 and |r〉 over a coarse-grained
timescale [28]. We obtain

Ĥ = −h̄�câ†â + h̄�↑Ĵ z + h̄(ηâ†e−i�d t + H.c.)

+ h̄g

2

[
�1

�l

(
Ĵ−â† + H.c.

) + �2

�r

(
Ĵ+â† + H.c.

)]

+
N∑

j=1

(
h̄�2

1

4�l
|↑〉 j〈↑| j + h̄�2

2

4�r
|↓〉 j〈↓| j

+
[

h̄g2

�r
|↑〉 j〈↑| j + h̄g2

�l
|↓〉 j〈↓| j

]
â†â

)
. (A4)

We may now set �↑ = �d = 0. Moreover, the last two lines
of Eq. (A4) represent the ac Stark shifts, which can be ignored
with physical justifications. For example, if the ground states
are hyperfine split states, a time-dependent external magnetic
field can shift the levels in such a way to compensate for
the Stark shifts proportional to �2

1 and �2
2, while the Stark

shifts proportional to g2 can be neglected because the cavity
mode decays on an extremely fast timescale, as discussed
Appendix A 3, and thus 〈â†â〉 ≈ 0. We therefore obtain the
final effective two-level Hamiltonian

Ĥ = −h̄�câ†â + h̄(ηâ† + H.c.)

+ h̄g

2

[
�1

�l
Ĵ−â† + �2

�r
Ĵ+â† + H.c.

]
. (A5)

In addition, we introduce dissipation of the cavity mode us-
ing the Lindblad superoperator Eq. (2) with jump operator
L̂cav = √

2κ â.

2. Rotating frame

To simplify the calculation of the final Hamiltonian, we
assume the classical fields take the form

�1 = |�1|e−iφ1 , �2 = |�2|e−iφ2 (A6)

so that Eq. (A5) becomes

Ĥ = − h̄�câ†â + h̄(ηâ† + H.c.)

+ h̄g

2

[
â†

( |�1|
�l

e−iφ1 Ĵ− + |�2|
�r

e−iφ2 Ĵ+
)

+ H.c.

]
.

(A7)

We now make rotations of the quantization axes of the collec-
tive dipole and the cavity in order to cancel the phases in Ĥ .
We therefore make the choices

â† → â†eiφa , Ĵ+ → Ĵ+e−iφJ , (A8)

with the phases

φa = 1
2 (φ1 + φ2), φJ = 1

2 (φ1 − φ2), (A9)

so that we have
˜̂Lcav =

√
2κ âe−iφa (A10)

as well as
˜̂H = −h̄�câ†â

+ h̄

[
â†

(
η + g|�1|

2�l
Ĵ− + g|�2|

2�r
Ĵ+

)
+ H.c.

]
.

(A11)

Here we have rotated the pump frequency

η → ηeiφa (A12)

such that the phases cancel in the final form of our
Hamiltonian.

3. Elimination of dissipative cavity mode

We now assume that the cavity mode â decays rapidly
so that it is in the bad cavity limit, meaning κ 
√

Nη,
√

Ng|�1|/(2|�l |),
√

Ng|�2|/(2|�r |). In this limit,
the cavity mode can be adiabatically eliminated so we may
find an effective master equation for the atomic degrees of
freedom. We do this by projecting the system onto the vacuum
state of the cavity mode and including effects from the atomic
evolution and atom-cavity interaction only up to second order.
The resulting master equation for the reduced density operator
ρ̂at = TrF [ρ̂], where TrF [·] is the partial trace over the cavity
degrees of freedom, is given by

∂ρ̂at

∂t
= L̂atρ̂at := 1

ih̄ [Ĥat, ρ̂at] + D̂[L̂]ρ̂at, (A13)

with the jump operator

L̂ =
√

κg2|�1|2
2|�l |2(�2

c + κ2)

(
Ĵ− +

∣∣∣∣�2�l

�1�r

∣∣∣∣Ĵ+ + 2η|�l |
g|�1| Î

)

(A14)

and an effective Hamiltonian

Ĥat = h̄�c

2κ
L̂†L̂. (A15)

APPENDIX B: CALCULATION OF OVERLAPS

1. Overlap of eigenstates

We now wish to derive a general formula for the overlap
of two DFS eigenstates |ψk〉 and |ψk′ 〉. To do this, we assume
that ĉ†

2 can be decomposed into a term proportional to ĉ†
1 and

a complementary term ĉ†
⊥ such that

ĉ†
2 = a1ĉ†

1 + a⊥ĉ†
⊥, (B1)

where we have [ĉ1, ĉ†
⊥] = 0 by construction. Therefore, the

overlap between two eigenstates becomes

〈ψk′ |ψk〉 = N ∗
k′Nk〈0|(ĉ1)N−k′

(ĉ2)k′
(ĉ†

1)N−k (ĉ†
2)k|0〉

= N ∗
k′Nk〈0|(ĉ1)N−k′

(a∗
1 ĉ1 + a∗

⊥ĉ⊥)k′

× (ĉ†
1)N−k (a1ĉ†

1 + a⊥ĉ†
⊥)k|0〉, (B2)

and since [ĉ1, ĉ⊥] = [ĉ†
1, ĉ†

⊥] = 0, we can use binomial theo-
rem to expand

〈ψk′ |ψk〉 =N ∗
k′Nk

k′∑
i=0

k∑
j=0

(
k′

i

)(
k

j

)
a∗

1
ia j

1a∗
⊥

k′−iak− j
⊥

× 〈0|(ĉ1)N−k′+i(ĉ⊥)k′−i
(
ĉ†

1

)N−k+ j(
ĉ†
⊥
)k− j |0〉.

(B3)

We note that when k′ − i > k − j or k′ − i < k − j, we obtain
〈ψk′ |ψk〉 = 0. Thus, we need k′ − i = k − j and so we set
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j = k − k′ + i to write

〈ψk′ |ψk〉 = N ∗
k′Nk

k′∑
i=0

(
k′

i

)(
k

k − k′ + i

)
|a1|2ia∗

1
k−k′

× |a⊥|2(k′−i)(N − k′ + i)!
[
ĉ1, ĉ†

1

]N−k′+i

× (k′ − i)!
[
ĉ⊥, ĉ†

⊥
]k′−i

. (B4)

We now must calculate[
ĉ1, ĉ†

2

] = [
ĉ1, a1ĉ†

1 + a⊥ĉ†
⊥
] = a1

[
ĉ1, ĉ†

1

]
(B5)

and use [ĉ1, ĉ†
1] = 1 + μ2 and [ĉ1, ĉ†

2] = 1 − μ2 such that

a1 = 1 − μ2

1 + μ2
. (B6)

To find the other coefficient, we first define the complemen-
tary operator as

ĉ†
⊥ = b̂†

↑ − μb̂†
↓ (B7)

so that we have [ĉ⊥, ĉ†
⊥] = 1 + μ2 and [ĉ⊥, ĉ†

2] = −2μ. Cal-
culating[

ĉ⊥, ĉ†
2

] = [
ĉ⊥, a1ĉ†

1 + a⊥ĉ†
⊥
] = a⊥

[
ĉ⊥, ĉ†

⊥
]
, (B8)

we find

a⊥ = − 2μ

1 + μ2
. (B9)

Therefore, we can write the general overlap as

〈ψk′ |ψk〉 =N ∗
k′Nk (1 + μ2)N

k′∑
i=0

(
k′

i

)(
k

k − k′ + i

)

× |a1|2ia∗
1

k−k′ |a⊥|2(k′−i)(N − k′ + i)!(k′ − i)!.

(B10)

Using this with k = k′, we can derive an analytic form of the
normalization factor

1

Nk
=

√√√√ k∑
i=0

(k
i

)
k!(N − k + i)!(1 − μ2)2i(4μ2)k−i

i!(1 + μ2)2k−N
(B11)

when μ �= 1.

2. Overlap of complementary states

We can perform a similar calculation for the overlap be-
tween two complementary states |ψ⊥

n 〉 and |ψ⊥
n′ 〉 by assuming

d̂†
2 can be decomposed into a term proportional to d̂†

1 and a
complementary term d̂†

⊥ such that

d̂†
2 = b1d̂†

1 + b⊥d̂†
⊥, (B12)

where we have [d̂1, d̂†
⊥] = 0 by construction. Therefore, the

overlap between two complementary states becomes

〈ψ⊥
n′ |ψ⊥

n 〉 = (2μ)2NN⊥
n′

∗N⊥
n

n′∑
i=0

n∑
j=0

(
n′

i

)(
n

j

)
b∗

1
ib j

1

× b∗
⊥

n′−ibn− j
⊥ 〈0|(d̂1)N−n′+i(d̂⊥)n′−i

× (d̂†
1 )N−n+ j (d̂†

⊥)n− j |0〉, (B13)

where we use the binomial theorem since [d̂1, d̂⊥] =
[d̂†

1 , d̂†
⊥] = 0. We again find that 〈ψ⊥

n′ |ψ⊥
n 〉 = 0 when n′ − i >

n − j or n′ − i < n − j such that we need j = n − n′ + i.
Therefore, we find

〈
ψ⊥

n′ |ψ⊥
n

〉 = (2μ)2NN⊥
n′

∗N⊥
n

n′∑
i=0

(
n′

i

)(
n

n − n′ + i

)

× |b1|2ib∗
1

n−n′ |b⊥|2(n′−i)(N − n′ + i)!

× [
d̂1, d̂†

1

]N−n′+i
(n′ − i)!

[
d̂⊥, d̂†

⊥
]n′−i

.

(B14)

We now must calculate[
d̂1, d̂†

2

] = [
d̂1, b1d̂†

1 + b⊥d̂†
⊥
] = b1

[
d̂1, d̂†

1

]
(B15)

and use [d̂1, d̂†
1 ] = (μ2 + 1)/(4μ2) and [d̂1, d̂†

2 ] = (μ2 −
1)/(4μ2) such that

b1 = μ2 − 1

μ2 + 1
. (B16)

To find the other coefficient, we first define the complemen-
tary operator as

d̂⊥ = 1
2 b̂↑ − 1

2μ
b̂↓ (B17)

so that we have [d̂⊥, d̂†
⊥] = (μ2 + 1)/(4μ2) and [d̂⊥, d̂†

2 ] =
−1/(2μ). Calculating

[d̂⊥, d̂†
2 ] = [d̂⊥, b1d̂†

1 + b⊥d̂†
⊥] = b⊥[d̂⊥, d̂†

⊥], (B18)

we find

b⊥ = − 2μ

μ2 + 1
. (B19)

Therefore, we can write the overlap of complementary
states as

〈
ψ⊥

n′ |ψ⊥
n

〉 =(μ2 + 1)NN⊥
n′

∗N⊥
n

n′∑
i=0

(
n′

i

)(
n

n − n′ + i

)

× |b1|2ib∗
1

n−n′ |b⊥|2(n′−i)(N − n′ + i)!(n′ − i)!.

(B20)

Setting n = n′, we can find the normalization factor to
be

1

N⊥
n

=
√√√√ n∑

i=0

(n
i

)
n!(N − n + i)!(μ2 − 1)2i(4μ2)n−i

i!(μ2 + 1)2n−N
. (B21)

APPENDIX C: CALCULATION OF
THE ADIABATICITY PARAMETER

1. General form

In order to quantify how quickly the system’s drives can
vary while remaining in the adiabatic regime, we now calcu-
late the adiabaticity parameter

�k = max
n

∣∣∣∣4〈ψ⊥
n |∂tψk〉

αnk + iζn

∣∣∣∣ � 1 ∀n �= k. (C1)
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We first find the time derivative using Eq. (18),

∂t |ψk〉 = ∂tNk

Nk
|ψk〉 + Nk

[
(N − k)

(
∂t ĉ

†
1

)(
ĉ†

1

)N−k−1

× (
ĉ†

2

)k + k
(
∂t ĉ

†
2

)(
ĉ†

1

)N−k(
ĉ†

2

)k−1]|0〉

= ∂tNk

Nk
|ψk〉 + μ̇b̂†

↑Nk
[
(N − k)

(
ĉ†

1

)N−k−1(
ĉ†

2

)k

− k
(
ĉ†

1

)N−k(
ĉ†

2

)k−1]|0〉

= ∂tNk

Nk
|ψk〉 + μ̇

2μ
Nk

[ N

Nk
|ψk〉

− N − k

Nk+1
|ψk+1〉 − k

Nk−1
|ψk−1〉

]
, (C2)

where we use

b̂†
↑ = 1

2μ

(
ĉ†

1 − ĉ†
2

)
. (C3)

We note that we can write

Ĵ z = 1
2

(
b̂†

↑b̂↑ − b̂†
↓b̂↓

) = − 1
2

(
d̂†

2 ĉ1 + d̂†
1 ĉ2

)
, (C4)

such that

Ĵ z|ψk〉 = −Nk

2

[
d̂†

2 ĉ1 + d̂†
1 ĉ2

](
ĉ†

1

)N−k(
ĉ†

2

)k|0〉

= −Nk

2

[
N − k

N⊥
k+1

|ψ⊥
k+1〉 + k

N⊥
k−1

|ψ⊥
k−1〉

]
, (C5)

so that we may relate

∂t |ψk〉 =
[
∂tNk

Nk
+ μ̇

2μ

(
N + 2Ĵ z

)]|ψk〉. (C6)

Projecting a complementary state on the left, we find

〈
ψ⊥

n |∂tψk
〉 = μ̇

μ

〈
ψ⊥

n |Ĵ z|ψk
〉

= − μ̇

2μ
Nk

[N − k

Nk+1
〈ψ⊥

k+1|ψk+1〉δn,k+1

+ k

Nk−1

〈
ψ⊥

k−1|ψk−1
〉
δn,k−1

]
, (C7)

which we combine with Eq. (23) to obtain

〈ψ⊥
n |∂tψk〉 = − μ̇(2μ)N−1Nk

[
N⊥

k+1(N − k)!(k + 1)!δn,k+1

+ N⊥
k−1(N − k + 1)!k!δn,k−1

]
. (C8)

We therefore only have to consider n = k ± 1 when calculat-
ing the adiabaticity criterion

�k = max
n=k±1

∣∣∣∣4〈ψ⊥
n |∂tψk〉

αnk + iζn

∣∣∣∣ � 1. (C9)

To calculate the terms in the denominator, we first
show that the complementary states |ψ⊥

n 〉 are right
eigenstates of L̃†,

L̃†|ψ⊥
n 〉 = (2μ)NμN⊥

n

(
d̂†

1 ĉ1 − d̂†
2 ĉ2

)(
d̂†

1

)N−n(
d̂†

2

)n|0〉
= (2μ)NμN⊥

n

(
d̂†

1

[(
d̂†

1

)N−n
ĉ1

+ (N − n)
(
d̂†

1

)N−n−1](
d̂†

2

)n

+ (
d̂†

1

)N−n
d̂†

2

[(
d̂†

2

)n
ĉ1 + n

(
d̂†

2

)n−1])|0〉
= μ(N − 2n)|ψ⊥

n 〉 = λ⊥
n |ψ⊥

n 〉, (C10)

and thus also of L̂†,

L̂†|ψ⊥
n 〉 = �⊥

n |ψ⊥
n 〉 =

√

c

(
λ⊥

n + χ
)|ψ⊥

n 〉. (C11)

Taking the Hermitian conjugate, this also implies

〈ψ⊥
n |L̂ = 〈ψ⊥

n |�⊥
n . (C12)

Note that for the relevant values of n = k ± 1 we have

�⊥
k±1 =

√

c[μ(N − 2k ∓ 2) + χk] = ∓2μ

√

c. (C13)

Since the eigenvalue �k is zero by the construction of χk , the
denominator of the adiabaticity parameter can be written as

αnk + iζn = ν + i

2
〈ψ⊥

n |L̂†L̂|ψ⊥
n 〉

= ν + i

2
〈ψ⊥

n |(L̂L̂† − [
L̂, L̂†

])|ψ⊥
n 〉

= ν + i

2
〈ψ⊥

n |[(�⊥
n )2 + 2
c(1 − μ4)Ĵ z

]|ψ⊥
n 〉

= 
c(ν + i)
[
2μ2 + (1 − μ4)〈ψ⊥

n |Ĵ z|ψ⊥
n 〉]

(C14)

for n = k ± 1, where we use

[L̂, L̂†] = 
c[(L̃ + χ Î), (L̃† + χ Î)] = 
c[L̃, L̃†]

= 
c[(Ĵ− + μ2Ĵ+), (Ĵ+ + μ2Ĵ−)]

= 2
c(μ4 − 1)Ĵ z, (C15)

since [Ĵ+, Ĵ−] = 2Ĵ z. We now define

ξk =
∣∣∣∣ 4〈ψ⊥

k±1|Ĵ z|ψk〉
μ[2μ2 + (1 − μ4)〈ψ⊥

k±1|Ĵ z|ψ⊥
k±1〉]

∣∣∣∣ (C16)

and so the final form of the adiabatic criterion becomes

�k = μ̇


c

√
1 + ν2

ξk � 1, (C17)

where we assume that μ̇ is real and positive.

2. Final value

We now wish to calculate the final value of the adiabaticity
parameter �k, f ≡ �k (t f ). Using

Ĵ z|ψ⊥
n 〉 = − (2μ)N

2
N⊥

n

[
d̂†

2 ĉ1 + d̂†
1 ĉ2

](
d̂†

1

)N−n(
d̂†

2

)n|0〉

= −N⊥
n

2

[
N − n

N⊥
n+1

|ψ⊥
n+1〉 + n

N⊥
n−1

|ψ⊥
n−1〉

]
,

(C18)
we first find

αnk + iζn =
c(ν + i)

[
2μ2 + N⊥

n

2
(μ4 − 1)

×
(

N − n

N⊥
n+1

〈ψ⊥
n |ψ⊥

n+1〉 + n

N⊥
n−1

〈ψ⊥
n |ψ⊥

n−1〉
)]

.

(C19)
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In the case μ = 1, the overlap sum Eq. (B10) reduces to

〈ψk′ |ψk〉 = 2N |Nk|2(N − k)!k!δk,k′ = δk,k′ , (C20)

as a⊥ = 1 and a1 = 0 picks out the i = 0 term in the sum and
sets 〈ψk′ |ψk〉 = 0 when k �= k′, and similarly for the comple-
mentary states. This combined with Eq. (C19) allows us to
obtain

αnk + iζn = 2
c(ν + i) (C21)

and thus

�k, f = max
n=k±1

[
4μ̇2N−1

2
c

√
1 + ν2

√
2N (N − k)!k!

×
(

(N − k)!(k + 1)!√
2N (N − k − 1)!(k + 1)!

δn,k+1

+ (N − k + 1)!k!√
2N (N − k + 1)!(k − 1)!

δn,k−1

)]
,

(C22)

where we assume that μ(t f ) = 1. Simplifying, we find

�k, f = max
k±1

[
μ̇


c

√
1 + ν2

(√
(N − k)(k + 1)δn,k+1

+
√

(N − k + 1)kδn,k−1
)]

,

(C23)

which we rewrite as

�k, f = μ̇


c

√
1 + ν2

ξk, f , (C24)

where we define

ξk, f =
{√

(N − k)(k + 1), k < N
2√

(N − k + 1)k, k � N
2 .

(C25)

3. Single-particle value

In the case N = 1, we have

|ψ0〉 = N0
(
μb̂†

↑ + b̂†
↓
)|0〉, |ψ⊥

1 〉 = N⊥
1

(−b̂†
↑ + μb̂†

↓
)|0〉,
(C26)

with N0 = N⊥
1 = 1/

√
1 + μ2. Using Eq. (C5), we project the

complementary state on the right to find

〈ψ⊥
n |Ĵ z|ψk〉 = − μ

1 + μ2
, (C27)

as well as using Eq. (C18) to write

〈ψ⊥
1 |Ĵ z|ψ⊥

1 〉 = − N⊥
1

2N⊥
0

〈ψ⊥
1 |ψ⊥

0 〉 = −1

2

μ2 − 1

μ2 + 1
, (C28)

where we use N⊥
0 = 1/

√
1 + μ2 and

〈ψ⊥
1 |ψ⊥

0 〉 = (2μ)2N⊥
1 N⊥

0 〈0|d̂2d̂†
1 |0〉 = N⊥

1 N⊥
0 = μ2 − 1

μ2 + 1
.

(C29)

We therefore, from Eqs. (27) and (26), obtain

�0 =
∣∣∣∣∣− 4μ̇μ

1 + μ2

1

μ
c(ν + i)
[
2μ2 − (1 − μ4) 1

2
μ2−1
μ2+1

]
∣∣∣∣∣

=
∣∣∣∣∣ −4μ̇


c(ν + i)
[
2μ2(1 + μ2) − (1−μ4 )(μ2−1)

2

]
∣∣∣∣∣.

(C30)
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