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Quantum particle in a parabolic lattice in the presence of a gauge field
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We analyze the eigenstates of a two-dimensional lattice with additional harmonic confinement in the presence
of an artificial magnetic field. While the softness of the confinement makes a distinction between bulk and edge
states difficult, the interplay of harmonic potential and lattice leads to a different classification of states in three
energy regions: In the low-energy regime, where lattice effects are small, all states are transporting topologically
nontrivial states. For large energies above a certain critical value, the periodic lattice causes localization of all
states through a mechanism similar to Wannier-Stark localization. In the intermediate energy regime transporting,
topologically nontrivial states coexist with topologically trivial countertransporting chaotic states. The character
of the eigenstates, in particular their transport properties, are studied numerically and are explained using a
semiclassical analysis.
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I. INTRODUCTION

Ultracold atoms in optical lattices have established them-
selves as powerful model systems offering unique experimen-
tal facilities for studying many fundamental phenomena of
solid-state and many-body physics. For example, the near
absence of dissipation in optical lattices has led to the
observation of single-particle quantum interference effects,
such as Bloch oscillations or Landau-Zener tunneling [1–3],
as well as Anderson localization in a disorder potential [4].
The ability to tune interactions, e.g., by spatial confinement
made it possible to drive interaction-induced quantum phase
transitions in cold atom experiments [5] and the variety
of lattice geometries possible allows one to observe, e.g.,
magnetic frustration in triangular lattices [6].

Particularly interesting in this context is the recent experi-
mental realization of artificial magnetic fields in lattices [7–10]
that opens prospects for studying quantum Hall effects and
Chern insulators with neutral atoms. To understand how well
this system can reproduce the solid-state Hall physics and what
novel effects may arise in the cold-atom setting, it is important
to understand the role of boundary conditions that principally
differ from the Dirichlet boundary conditions in solid crystals.
This problem was addressed recently in [11–14], where a quan-
tum particle in a two-dimensional (2D) square lattice subject
to an Abelian gauge field was considered and the effects of
a confinement potential V (r) ∼ (xδ + yδ) [11] and V (r) ∼ rδ

[12–14] was studied. These potentials impose smooth bound-
aries with a variable steepness characterized by the parameter
δ. It was shown that there is no principle difference between
Dirichlet (δ = ∞) and smooth boundaries if δ � 4. For δ � 4
one can clearly distinguish edge states from bulk Landau states
which is believed to be a precondition to mimic solid-state Hall
physics with cold atoms. The case δ = 2, which is typically
realized in laboratory experiments, appeared to be more subtle,
with no clear conclusions and contradictory statements that
separation between the edge and bulk states is possible [13] or
not [11].

The aim of the present work is a detailed analysis of the
spectrum and eigenstates of a quantum particle (an atom) in

a 2D lattice with harmonic confinement (so-called parabolic
lattice [15]) in the presence of an artificial magnetic field (see
Fig. 1). In other words, we focus on the above-mentioned
case of δ = 2. Without lattice potential, the eigenstates are
identical to Landau levels (LLs) in symmetric gauge. If
the harmonic confinement is weak, such that the oscillator
frequency is small compared to the cyclotron frequency,
every eigenstate with energy E corresponding to lowest LL
states is localized at the boundary of the classically allowed
region fixed by E, and it makes no sense to distinguish
edge and bulk states. Numerical simulations of eigenstates
and spectra, of wave-packet dynamics, and the effect of a
local flux insertion show, however, that the presence of a
lattice potential gives rise to a different classification of
eigenstates in three regimes: a low-, medium-, and high-energy
regime. The structure of the corresponding eigenstates will be
explained making use of a semiclassical analysis as well as
recent analytical results about Landau-Stark states [18,19],
which are eigenstates of a quantum particle in the presence
of a “magnetic” field normal to the lattice plane and an
in-plane “electric” field. We will introduce a classification
of quantum states into topologically nontrivial transporting
states, chaotic countertransporting states, and localized states.
We also identify a fundamental frequency [the encircling
frequency; see Eq. (7) in Sec. III], which takes over the role of
cyclotron frequency for the quantum particle in a plane lattice.

II. MODEL

We consider neutral atoms in a a two-dimensional square
lattice with period a = 1 in the tight-binding limit, as indicated
in Fig. 1. The atoms are subject to an artificial magnetic field
and there is an additional harmonic confinement. Using the
Landau gauge the corresponding Hamiltonian reads

(Ĥψ)n,m = −J

2
(ei2παnψn,m+1 + e−i2παnψn,m−1)

− J

2
(ψn+1,m + ψn−1,m) + γ

2
(n2 + m2)ψn,m,

(1)
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FIG. 1. (Color online) (Left) Two-dimensional square lattice
model with complex hopping amplitudes equivalent to a magnetic
field perpendicular to the lattice. There is an additional harmonic
confinement potential as is the case for most cold-atom experiments.
The Peierls phase α quantifies the flux per plaquette in units of the flux
quantum. (Right) Shaded region between parabolas (blue): sketch of
allowed spatial and energy regions for particle trajectories in local
density approximation and for α = 0. Characteristic energy scales
that will be introduced in the paper are the minimum energy E ≈ −2J

(lower solid parabola), the energy E = 0 where chaotic trajectories
appear (central dashed parabola), and Ecr where a delocalization-
localization crossover takes place.

where n and m label the sites of the square lattice, J is
the hopping matrix element, and γ the strength of harmonic
confinement. (The latter parameter can be expressed through
the trap frequency ωhc and the atom mass M as γ = Ma2ω2

hc.)
The presence of the magnetic field is encoded in the Peierls
phase α which is equal to the magnetic flux per plaquette in
units of the flux quantum. In order to be close to Landau-level
physics in a homogeneous system, we will assume throughout
this paper that the magnetic unit cell is much larger than the
lattice unit cell. In most cases we use α = 1/6 or 1/10.

III. NUMERICAL SIMULATION
OF THE QUANTUM PROBLEM

A. Eigenstates and spectrum

If γ = 0 the spectrum of (1) consists of a finite (rational α)
or infinite (irrational α) number of magnetic sub-bands in the
energy interval −2J < E < 2J . The presence of the harmonic
confinement changes this spectrum. It is now unbounded from
above, −2J < E < ∞, and one finds only remnants of the
magnetic sub-bands in the form of steps in the mean density
of states (DOS) for E < 2J [20]. With increase of the energy
above 2J the mean density of states approaches the value,

ρ(E) = 2π/γ, (2)

which coincides with the density of states of (1) for α = 0.
Although ρ(E) for α �= 0 looks similar to that for α = 0, the
details of the spectrum and the eigenstates are completely
different.

If γ is small and α = 0, a qualitative picture of the effect of
the harmonic confining potential can be obtained by treating
it as a space-dependent chemical potential, which leads to the
overall band structure depicted in Fig. 1. As indicated in the
figure we will show in this paper that one has to distinguish
three qualitatively different energy regions: a low-energy
regime E < 0, a high-energy regime E > Ecr > 2J , and a
medium energy regime in between. The critical energy will be

FIG. 2. The 25th (a), 349th (b), 1365nd (c), and 1370th (d)
eigenstates of the Hamiltonian (1) with energies E/J = −0.5511,

2.7671,10.8544,10.9069, respectively. The squared absolute value
of the wave function 	n,m is shown as a grayscale map. We used
α = 1/6 and γ /J = 0.05.

shown to be

Ecr = (2παJ )2

2γ
= ER

(
ωα

ωhc

)2

, (3)

where ER = �
2/Ma2 is proportional to the recoil energy and

ωα = 2παJ/� has the meaning of the cyclotron frequency. As
will be seen in the following, the nature of the eigenstates is
very different in the different parts of the spectrum.

Numerical diagonalization of the Hamiltonian Eq. (1)
allows us to easily calculate the single-particle spectrum
and the corresponding eigenstates of the problem. In Fig. 2
we have plotted the absolute square of the eigenstates for
energy values corresponding to the different regions. One
notices a qualitative change in the character of the states when
increasing the energy. For low energies, as shown in Fig. 2(a)
(E/J = −0.5511), the eigenstates are circular, resembling
Landau states with fixed angular momentum. For intermediate
energies, as shown in Fig. 2(b) (E/J = 2.7671) there is a
more complex pattern. There are two circular structures, an
inner and an outer one, corresponding to the boundaries of the
classically allowed regions for the given energy [see Fig. 1(b)].
In addition there is, however, also a finite probability amplitude
in the spatial region between the two rings. Finally when going
to high energies, as shown in Figs. 2(c) and 2(d) localized
structures emerge with a fourfold symmetry corresponding to
the underlying square lattice.

1. Low-energy region

In the low-energy part of the spectrum we can use the
long-wavelength or effective mass approximation to write the
Hamiltonian, Eq. (1), in the form (here and in the following
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FIG. 3. The low-energy part of the spectrum for J = 1 and
γ = 0.05 as a function of the Peierls phase α.

we set � = 1),

Ĥ = 1

2M∗ (p̂ − A)2 + γ

2
(x2 + y2). (4)

Here M∗ = J−1 is the effective mass, and A =
2πα(−y/2,x/2) the vector potential (where we have changed
to the symmetric gauge). It is convenient to express (4) in the
form,

Ĥ = Ĥ0 − ωL̂z, Ĥ0 = p̂2

2M∗ + γ + M∗ω2

2
(x2 + y2), (5)

where L̂z is the angular-momentum operator, and ω = Jπα.
The eigenstates of (5) are labeled by the angular momentum
nL, and the radial quantum number nr , defining the Landau
level [21]. These quantum numbers can be used to characterize
the low-energy eigenstates of the system (1) in spite of the fact
that, strictly speaking, the eigenstates do not possess rotational
symmetry due to the lattice potential.

Figure 3 shows the lower part of the energy spectrum of (1)
as the function of the Peierls phase α, i.e., the magnetic flux per
plaquette. One clearly sees the Zeemann splitting of degenerate
levels of the 2D harmonic oscillator, where the first level has
quantum numbers (nr,nL) = (0,0), the second level (0,1) and
(1,−1), the third (0,2), (1,0), (2,−2), the fourth (0,3), (1,2),
(2,−1), (3,−3), the fifth (0,4), (1,2), (2,0), (3,−2), (4,−4),
and so on. With increase of α these levels rearrange in a
pattern which consists of series of levels with fixed nr and
monotonically increasing nL.

A different interpretation of the low-energy spectrum is
based on the observation that for γ = 0 the Hamiltonian (5)
defines the degenerate Landau levels with level spacing given
by the cyclotron frequency,

ωα = 2παJ = 2ω, |α| � 1/2. (6)

The harmonic confinement splits these degenerate levels into
series of levels with equidistant spacing 
. For small γ one
finds


 = γ

2πα
. (7)
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FIG. 4. A fragment of the medium energy spectrum of the
Hamiltonian (1) for J = 1, γ = 0.05, and 0 � α � 0.2.

2. Medium energy region

Figure 4 shows a fragment of the medium energy spectrum
of Hamiltonian (1) as a function of the Peierls phase α for
J = 1 and γ = 0.05. Here a rather complicated level pattern
is noticed. There is a large number of levels with true or nearly
avoided crossings. One notices, however, that some regular
structures of the low-energy spectrum survive.

3. High-energy region

The characteristic feature of the high-energy spectrum
above a certain critical value Ecr, a fragment of which is shown
in Fig. 5, is an approximate fourfold degeneracy of the energy
levels. This degeneracy reflects localization of the eigenstates
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FIG. 5. A fragment of the high-energy spectrum of the
Hamiltonian (1), for J = 1, γ = 0.05, and 0 � α � 0.2
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FIG. 6. Populations of the lattice sites at the end of numerical
simulation. Initial conditions correspond to a narrow scrambled
Gaussian centered at (n0,m0) = (0,20), case (a), and (n0,m0) =
(0,50), case (b). Parameters are J = 1, α = 0.1, and γ = 0.01.
Evolution time is t = 30TJ , (TJ = 2π/J ).

in segments of the circles [see Fig. 2(d)]. Due to the fourfold
lattice symmetry there are three other eigenstates with almost
the same energy which look similar to the depicted state. From
this set of four exact states one can construct a new set of four
approximate eigenstates, where every state is localized only in
one segment. Thus a particle with the mean energy E > Ecr,
which is initially localized within one of the segments, remains
localized in this segment for exponentially large times.

B. Dynamical signatures of localization

To experimentally observe the characteristics of eigenstates
at different energies, we suggest measuring dynamics of an
initially localized wave packet. Our numerical experiment
follows the scheme of laboratory experiments on dipole
oscillations of cold atoms in parabolic lattices. The protocol
involves a sudden shift of the origin of the harmonic potential
by distance r0, so that the atomic cloud appears on the slope
of the parabolic lattice where it has the energy E ≈ γ r2

0 /2.
Then the system evolves freely for a certain time t , which is
followed by (destructive) measurement of the atomic density.
The result of this numerical experiment is shown in Fig. 6,
where we have chosen a narrow Gaussian distribution with
random phases as the initial condition. The packet is shifted
from the lattice origin by m0 = 20 sites, case (a), and m0 = 50
sites, case (b). In the former case the packet energy is smaller
than the critical energy Ecr and it encircles the lattice origin.
In the latter case, where E > Ecr, the wave packet remains
localized. Since the wave-packet dynamics can be expressed
in terms of eigenstates, this result undoubtedly indicates the
qualitative difference between states below and above Ecr.

C. Effects of disorder

An important characteristics of topological systems is
their robustness against disorder. Because of their effective
description in terms of the topologically nontrivial lowest

Landau level states (cf. Sec. III A 1), we expect low-energy
states to be robust to such disorder. In the following we will
show that this is indeed the case, while high-energy states are
very sensitive to disorder.

To this end we analyze the robustness of these states
by adding a weak random on-site potential Vnm to the
Hamiltonian (1) in our numerical simulations. Vnm is a uniform
distribution with vanishing mean value and is assumed to be
spatially uncorrelated,

[VnmVn′m′ ]1/2 = ε δn,n′δm,m′ . (8)

Here ε describes the strength of the disorder potential. A
convenient characteristic of the robustness of an eigenstate
	(ν) to disorder is the quantity,

C(ν) =
∣∣∣∣∣
∑
n,m

	
(ν)
−n,−m

(
	(ν)

n,m

)∗
∣∣∣∣∣ � 1, (9)

where the sum runs over all lattice sites. For a vanishing
random potential one can prove using Eq. (1) that all
eigenstates are symmetric or antisymmetric functions with
respect to reflection n → −n and m → −m, i.e.,

	−n,−m = ±	n,m. (10)

In this case C(ν) equals to unity and

(E) =
∑

ν,Eν�E

C(ν) (11)

is equal to the integrated density of states up to energy E.
Figure 7 shows (E) for increasing disorder strength

as well as the corresponding function in the absence of
disorder (dashed curve). The random potential breaks the
symmetry (10) and C(ν) quickly drops below unity (see inset
of Fig. 7), where the eigenstates are sorted according to their
energies. One notices a remarkable agreement of (E) with

units of

FIG. 7. (Color online) (Main panel) Effect of disorder on the
eigenstates. Shown is the cumulative sum (E) = ∑

ν C(ν) for
different disorder strength ε/J = 0.01, 0.05, 0.1, solid lines from
top to bottom. The vertical (blue) dotted line indicates the critical
energy and the (green) dashed line shows the integrated DOS in the
absence of disorder. (Inset) The quantity (9) for a specific realization
of a weak on-site random potential |Vn,m| � ε/2 with ε = 0.1J . The
eigenstates are ordered by their energies E. We used α = 1/6 and
γ /J = 0.05.
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its value in the absence of disorder in the low-energy region.
The deviations from the disorder-free curve increase with
increasing ε but stay small until the critical energy Ecr. Thus
the random potential affects only some of the eigenstates for
E < Ecr. Above Ecr, however, (E) saturates which indicates
that the disorder completely randomizes the eigenstates. We
conclude that most of the states with Eν < Ecr are robust
against impurities (C(ν) ≈ 1) while most of the states with
Eν > Ecr are not (C(ν) ≈ 0). Let us emphasize that at Ecr a
crossover takes place, rather than a sharp transition.

In the following sections we want to provide some under-
standing of the spectrum, the eigenstates, and their transport
properties for α �= 0.

IV. CLASSICAL APPROACH

Following the line of Refs. [18,19] we provide here a
classical analysis of the system (1), which allows insight into
the transport properties of the states. The classical counterpart
of the quantum Hamiltonian (1) reads

Hcl = −J cos(px) − J cos(py − x̃) + γ̃

2
(x̃2 + ỹ2), (12)

where γ̃ = γ /(2πα)2. As shown in [19] the classical limit
corresponds to α → 0 while keeping γ̃ constant, and in
this case 2παn → x̃ and 2παm → ỹ become continuous
variables. Thus the only relevant parameter of the classical
dynamics is γ̃ /J [22]. In what follows, however, we shall use
a different form of the classical Hamiltonian,

Hcl = −J cos(px) − J cos(py − 2παx) + γ

2
(x2 + y2), (13)

which is obtained from the previous Hamiltonian by obvious
scaling of the coordinates x and y. This form allows a direct
comparison of the classical trajectories with the quantum wave
functions for a finite α.

For a given energy E any phase trajectory of (13) is
uniquely described by momenta px and py and the angle
ϑ = arctan(x/y), which are cyclic variables. Thus the energy
shell of (13) lies inside the three-dimensional torus or coincides
with this torus if E � 2J . Figure 8 shows the Poincare cross
sections of the energy shell by the plane ϑ = 0 for few values
of E. While for E < 0 we only found regular trajectories,
for E � 0, where the effective mass approximation (4) fails
completely due to the lattice, the typical structure of a
nonintegrable system with mixed phase space is noticed.

Let us first discuss the case of moderate energy, where the
phase space consists of two big stability islands surrounded by
the chaotic sea [see Fig. 8(c)]. For reasons that become clear
below, we will refer to them as inner and outer transporting
islands. The blue and red lines in Fig. 9 show the particle trajec-
tories for initial conditions inside the central and lower or upper
stability islands, respectively. Additionally, the winding angle
ϑ = arctan(x/y) is depicted in Fig. 10(a) as a function of time.
It is seen from Fig. 10 that both of these trajectories encircle
the coordinate origin clockwise with frequency 
 given in
Eq. (7). We will refer to them as transporting trajectories.

In the classical approach the encircling frequency is
determined by the drift velocity of a charged particle in
the crossing electric and magnetic fields. In fact, locally we
can approximate the parabolic potential by a gradient force
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FIG. 8. (Color online) Poincare cross sections by the plane ϑ = 0
for energy E/J = 0,0.5,3,11 (a)–(d). The system parameters are
α = 1/6 and γ /J = 0.05. The solid lines in the panels (a) and (b)
restrict the available phase space.

pointing to the coordinate origin,

F = −γ r, r = (x,y). (14)

In the notation used throughout the paper, the drift velocity in
the direction perpendicular to F is given by [18]

v∗ = F/2πα. (15)

Thus the encircling period is T
 ≡ 2π/
 = 2πr/

v∗ = (2π )2α/γ .

units of
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FIG. 9. (Color online) Examples of classical trajectories with
E/J = 2.5 for three different initial conditions: (px,py) ≈ (0,0)
(outer, blue), (π,π ) (inner, red), and (π/2,π/2) (middle, magenta).
The initial value of x is zero for all three trajectories and the initial
value of y is adjusted to ensure equal energies. The evolution time
corresponds to five periods of frequency (7). We used parameters
α = 1/6 and γ /J = 0.05.
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FIG. 10. (Color online) (Upper panel) Winding angle ϑ =
arctan(x/y) as the function of time for the three trajectories shown in
Fig. 9. Upper curve is the inner regular trajectory, middle curve the
outer regular trajectory, and the lower curve the chaotic trajectory.
(Lower panels) Distribution function f (ϑ,t) for the winding angles ϑ

at t = 4T
 = 8π/
 for 400 different trajectories on the energy shell
E/J = 3 (left) and E/J = 10 (right).

Closer inspection of the numerical data in Fig. 10(a) shows
that the encircling frequency for the outer trajectory in Fig. 9
is slightly smaller than 
, while for the inner trajectory it is
slightly larger. More importantly the inner trajectories appear
only when E approaches 2J . Let us mention that angular
momentum is an approximate integral of motion for the
transporting trajectories as ϑ̇ ≈ const. and r ≈ const. [see
Figs. 9 and 10(a)], and as

ϑ̇ = L

r2
, L = ṙ × r. (16)

If the initial condition is chosen outside the transporting
islands [magenta lines in Figs. 9 and 10(a)], yet another type
of trajectory is found. These trajectories appear to be chaotic,
and in average rotate counterclockwise. We will refer to them
as countertransporting trajectories. Because of their chaotic
nature, they do not have a well-defined encircling frequency.
Instead we find numerically for sufficiently large energies
that they obey the so-called summation rule. Namely, if we
chose an ensemble of classical particles uniformly distributed
over the energy shell, the clockwise current due to (regular)
transporting trajectories and the counterclockwise current due
to (chaotic) countertransporting trajectories compensate each
other. We conjecture that this sum rule is valid as soon as the
entire phase space is classically allowed, although we are not
aware of an exact proof.

The sum rule is also illustrated in the lower panels of Fig. 10
which show the distribution of the winding angles ϑ at t = 4T


for 400 different trajectories with random initial conditions,
yet x(t = 0) = 0, and fixed energy E/J = 3 (left panel) and
E/J = 10 (right panel). The double-peak structure of the
distribution function f = f (ϑ,t) reflects the presence of both
transporting and countertransporting trajectories. It is also seen
in the figure that the right peak of f (ϑ,t), which is associated

with transporting trajectories, decreases if the energy is
increased. This is due to the decrease of the size of transporting
islands in Fig. 8, which are smaller for larger energy (i.e., larger
gradient force) and completely disappear for energies above
the critical energy Ecr [see Fig. 8(d)]. In this case the distri-
bution function f (ϑ,t) becomes localized within the interval
|ϑ | < 2π , indicating the absence of transport in the system.

We can obtain an estimate for the critical energy Ecr by
drawing an analogy with the related problem of Landau-Stark
states which, by definition, are eigenstates of a charged particle
in a two-dimensional plane lattice in the presence of in-plane
electric field and normal-to-the-lattice magnetic field. It was
shown in [18,19] that these states show a delocalization-
localization crossover at

Fcr = 2παJ. (17)

Namely, the localization length ξ⊥ of the Landau-Stark states
in the direction orthogonal to F blows up exponentially when
the electric field decreases below the critical value (17) [23].
Associating F in (17) with the gradient force (14) and
neglecting the kinetic energy in Eq. (13) we find

Ecr ≈ (2παJ )2/2γ. (18)

We also mention that the classical counterpart of the quantum
Hamiltonian of Landau-Stark states has quite a similar struc-
ture of phase space, containing two chains of transporting
islands. In this sense, the physics behind localization of the
Landau-Stark states and wave-function localization discussed
in Sec. III.A is the same and is related to disappearance of the
transporting islands at F = Fcr.

V. TOPOLOGICAL CLASSIFICATION
OF THE QUANTUM STATES

In the previous section we introduced the notions of trans-
porting and countertransporting trajectories in the classical
version of our model and identified them with the various
quantum states obtained in Sec. III A. Now we will investigate
the topological properties of these states. To this end we reverse
Laughlin’s argument [24] for the quantization of the Hall
conductance: We adiabatically introduce local magnetic flux
and investigate the system’s response, i.e., the Hall current.
This allows us to distinguish between topologically trivial and
nontrivial eigenstates.

A. Local flux

A local flux insertion at the origin leads to an additional
contribution to the vector potential,

A(x,y) ∼
(

− y

x2 + y2
,

x

x2 + y2

)
. (19)

It corresponds to a magnetic field which is zero everywhere
except at the coordinate origin. It is easy to show that the tight-
binding counterpart of (19) results in an additional contribution
to the Peierls phase by

φx(n,m) ≡ φ(n,m)

= θ

[
arctan

(
2n− 1

2m − 1

)
− arctan

(
2n+ 1

2m − 1

)]
(20)
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FIG. 11. (Color online) Different regions of the energy spectrum
of Hamiltonian (21) as a function of the flux θ inserted at the origin.
Parameters are J = 1, α = 0.1, and γ = 0.018. Shown are the low-
(right), medium- (middle), and high-energy regions (right). Notice
the different scales of the energy axis in the panels.

in the x direction and φy(n,m) = φ(m,n) in the y direction.
Here θ quantifies the amount of the flux inserted in units of
the magnetic flux quantum. Thus we have

(Ĥψ)n,m = −J

2
(e−iπαme−iφ(n,m)ψn+1,m + H.c.)

− J

2
(eiπαneiφ(m,n)ψn,m+1 + H.c.)

+ γ

2
[(n − 1/2)2 + (m − 1/2)2]ψn,m. (21)

Notice that in comparison with (1) we here used the symmetric
gauge for the uniform magnetic field and shift the coordinate
origin from the site (n,m) = (0,0) to the center of the plaquette.

Figure 11 shows the low-, medium-, and high-energy parts
of the spectrum of (21) as a function of the inserted flux θ .
The system parameters are J = 1, α = 0.1, and γ = 0.018,
which correspond to the same value of the parameter γ̃ that
was used in Secs. III and IV (thus also Ecr/J is the same as in
the previous sections). It is seen from Fig. 11 that the positions
of the energy levels for θ = 0 and θ = 1 coincide, which is a
direct consequence of gauge invariance. Thus the spectrum has
the cylinder topology where a given energy level is connected
to another level according to some specific rule [25].

One can easily deduce this rule by analyzing the level
pattern in the low-energy region [Fig. 11 (left)]. Indeed, consid-
ering θ = 0 and appealing to the effective mass approximation
we can assign the following quantum numbers to the depicted
energy levels: (nr,nL) = (0,0),(0,1),(0,2), . . . ,(0,21). The
level spacings in this regime are described by Eq. (7). The
22nd energy level has quantum numbers (1,−1) (it is
the lowest-energy state belonging to the first Landau level) and
next levels (0,22),(1,0),(0,23),(1,1),(0,24),(1,2), . . . . When
θ is increased by unity every state is seen to acquire exactly
one quantum of angular momentum, as it is expected on the
basis of the effective mass approximation. Moreover this is

in agreement with our expectation that low-energy states are
topologically nontrivial.

This rule can also be applied to the medium energy
region, however, only to the transporting states. For the
transporting states, and only for those, angular momentum
is an approximate quantum number. This is exemplified in the
middle panel in Fig. 11, where the transporting (topologically
nontrivial) states coexist with chaotic countertransporting
(topologically trivial) states. One should remark though that
the statement “every transporting state acquires exactly one
quantum of angular momentum” is valid only if we ignore
avoided crossings. The presence of avoided crossings, which
reflect hybridization of the transporting and countertransport-
ing states in the quantum case, has important consequences for
the excitation dynamics of the system considered in the next
subsection.

As can be seen from the right panel of Fig. 11 there is
just one state that, upon flux insertion, connects to one with a
larger angular momentum in the high energy region [26]. This
is a signature that most of the states in this energy region are
nontransporting and topologically trivial.

In conclusion, we find that in the low-energy sector of our
system, all states are topologically nontrivial because they
generate a nontrivial Hall current when a flux quantum is
introduced to the system in the spirit of Laughlin. All states
in this regime are transporting. In the high-energy sector in
contrast, the system is topologically trivial with no Hall current
being supported and no transporting states. In the medium
energy regime we find a mixture of topologically trivial (and
nontransporting) and nontrivial (transporting) states.

B. Excitation dynamics

Let us now consider excitations of the system from its
ground state by a time-dependent flux θ = νt . If ν is larger
than the characteristic gap of avoided crossings but smaller
than the encircling frequency 
 the system is expected to
diabatically (i.e., ignoring tiny avoided crossings) follow the
instantaneous energy level and, hence, the mean energy,

E(t) = 〈ψ(t)|Ĥ (θ = νt)|ψ(t)〉, (22)

un
its

 o
f

units of

FIG. 12. (Color online) Mean energy (22) as the function of time
for J = 1, ν = 0.1, (blue) dashed line, and ν = −0.1, (red) solid line.
The system parameters are α = 0.1 and γ = 0.018.
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units of

FIG. 13. (Color online) Expansion coefficients cn for the wave
function ψ(t) in the instantaneous basis at t = 50Tν and t = 200Tν

(ν = 0.1J ).

should monotonically grow in time. For the parameters of
Fig. 11 and ν = 0.1J the average energy, Eq. (22), is shown
in Fig. 12 by the blue dashed line. It is seen that for finite
times E(t) indeed shows the expected linear increase which for
longer times, however, saturates. In the following we discuss
these two regimes separately.

The linear regime corresponds to diabatic Landau-Zener
transitions at the avoided crossing. This is confirmed by
considering the wave function in the instantaneous basis of
the Hamiltonian (21),

|ψ(t)〉 =
∑

n

cn(t)|	n(θ = νt)〉. (23)

The upper panel in Fig. 13 shows the expansion coefficients
cn at t = 50Tν , (Tν = 2π/ν). It can be seen that only one
level of the Hamiltonian Ĥ (θ ) is populated. In real space the
ground-state wave function, which resembles a wide Gaussian,
evolves into a ring with the radius increasing in time; see
Fig. 14(a). Notice that there is no “population” inside the ring
which is another indication of the diabatic regime.

When the ring is approximately two times larger than in
Fig. 14(a) we observe population of the lattice sites inside
the ring. This indicates that the Landau-Zener transitions at
the avoided crossings are no longer diabatic and, hence, other
states of Ĥ (θ ) get populated. Finally, for even larger times

FIG. 14. Population of the lattice site |ψn,m(t)|2 at t = 50Tν and
t = 200Tν (ν = 0.1J ).

units of

FIG. 15. (Color online) Expansion coefficients cn for the wave
function ψ(t) in the instantaneous basis at t = 5Tν and t = 200Tν

(ν = −0.1J ).

the ring fades and population is redistributed over the circle
of a finite radius; see Fig. 14(b). This is the beginning of
a self-thermalization process, where the mean energy E(t)
saturates. Remarkably, the saturation energy is found to be
substantially smaller than the critical energy (18). This is a
manifestation of the hybridization between transporting and
countertransporting states—the system can reach 〈E(t)〉 � Ecr

only in the classical limit α,γ → 0 (α2/γ = const), where
hybridization is absent.

We conclude this section by considering the case of
negative ν. For negative ν the time-dependent flux induces
a counterclockwise “circular electric field” which is expected
to excite the countertransporting states. The mean energy of
the system for negative ν = −0.1J is depicted by the red
solid line in Fig. 12. A rapid initial growth of the energy
corresponds to a transient regime where the system follows
the energy level connecting the ground state (nr,nL) = (0,0)
with the state (nr,nL) = (1,−1) in the first Landau level
[see Fig. 11(a)]. After this transient regime the diabatic
approximation no longer holds and the subsequent excitation
dynamics resembles chaotic diffusion where population is
redistributed among many eigenstates of the Hamiltonian (21),
including the low-energy states (see Fig. 15). This hypothesis
about chaotic diffusion is further supported by the random
distribution of population of the lattice sites |ψn,m(t)|2 at large
times [see Fig. 16(b)].

FIG. 16. Population of the lattice site |ψn,m(t)|2 at t = 5Tν and
t = 200Tν (ν = −0.1J ).

033607-8



QUANTUM PARTICLE IN A PARABOLIC LATTICE IN . . . PHYSICAL REVIEW A 89, 033607 (2014)

VI. CONCLUSIONS

We analyzed the eigenstates of a quantum particle in a
parabolic lattice in the presence of a gauge field characterized
by the Peierls phase α. In a simplified manner the results of
this analysis can be summarized as follows.

In the absence of harmonic confinement and lattice potential
the eigenstates of the problem are the well-known Landau
states, which are labeled by the radial nr (Landau level), and
the angular momentum nL quantum numbers. These Landau
levels constitute sets of topologically nontrivial states. In the
presence of a lattice this picture still holds in the low-energy
regime of small nr (in particular, nr = 0) and positive nL (for
positive α), where the effective mass approximation is valid.
We specifically showed that all characteristic features carry
over: Low-energy states are extended, robust against disorder,
and they produce a quantized Hall current when flux is locally
inserted in the center of the lattice. Classically, they correspond
to regular transporting trajectories.

In the presence of the harmonic confinement (with strength
γ ), these Landau states arrange in an equidistant spectrum with
frequency separation 
 = γ /2πα between two states whose
angular momentum nL differs by one unit. When also the
lattice is present, we find three sorts of states: the low-energy

sector can still be understood in terms of Landau states
described above. When the energy increases the discreteness
of the lattice starts to break the effective mass approximation.
In the classical picture, more and more transporting trajectories
turn into chaotic ones, and the corresponding quantum states
can be labeled only by their energies. These states are sensitive
to disorder and topologically trivial, as we deduced from their
response to local flux insertion. In the medium energy sector
we furthermore identified a second set of regular transporting
trajectories (classical picture), which in the quantum picture
are obtained from the negative-effective mass approximation
around the band maximum. In the high-energy sector, above
the critical energy Ecr, all states become localized due to the
Landau-Stark localization. Hence, in this regime there is no
transport in the system (i.e., the system becomes a trivial
insulator) and the eigenstates are topologically trivial.
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H.-C. Nägerl, Phys. Rev. Lett. 104, 200403 (2010).

[3] A. Zenesini, H. Lignier, G. Tayebirad, J. Radogostowicz,
D. Ciampini, R. Mannella, S. Wimberger, O. Morsch, and
E. Arimondo, Phys. Rev. Lett. 103, 090403 (2009).

[4] G. Roati, C. D’ Errico, L. Fallani, M. Fattori, C. Fort,
M. Zaccanti, G. Modugno, M. Modugno, and M. Inguscio,
Nature (London) 453, 895 (2008).

[5] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch,
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